

Fixed Point Arithmetic for Embedded Systems

Systèmes Embarqués Microprogrammés

Content of Session

- 1. What is and why do we need fixed-point arithmetic?
- 2. Introduction to numeric representations
- 3. Arithmetic in fixed-point

What is fixed-point (FxP)?

Given a fixed number of digits in base 10, we can represent integer numbers by:

10³

10² | 10¹ | 10⁰ | Positional notation

• We can represent decimal numbers if we multiply implicitly by a negative power of 10:

5	4	2	9
10 ¹	10 ⁰	10 -1	10 -2

54.29

5429

We can do the same in binary:

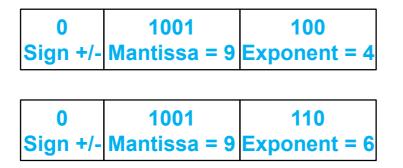
1	0	1	1
2 ¹	2 ⁰	2 -1	2 -2

2.75

- The position of the decimal point is implicit (and fixed).
 - But we can modify it by explicitly shifting.

What is floating-point (FP)?

- Floating point numbers are divided into two parts:
 - Significant digits (a.k.a. mantissa)
 - Exponent (a power of 2)
- A sequence of binary digits multiplied by [2 to the power of] the exponent:



576 (9x2⁶)

Floating point is a non-positional notation!

 The position of the decimal point is determined by the exponent value

Comparison between FxP and FP

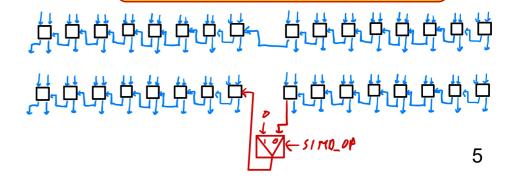
Fixed Point

- Reuse integer arithmetic units
 - Both are positional
- Reuse integer registers
- SW can easily define its own representation
 - Because the position of the decimal point is implicit (i.e., hidden from the HW)
 - SW decides how to interpret the numbers
 - Always unsigned or 2's complement
- Easy to implement SIMD model for smaller bitwidths

Floating Point

- Requires specific HW units
 - And the logic is more complex
- Requires new set of registers
 - (Just common practice)
- Difficult to define nonstandard configurations that differ from what is supported by the HW

How can we convert an integer adder into a SIMD adder?



EPFL

Comparison between FxP and FP

- Floating point requires different HW units
 - → High cost in terms of area and power
 - Higher leakage due to larger area
 - Higher dynamic power due to more complex operation
- But it can also be executed in "SW-emulation" mode
 - Bit-manipulation operations to separate and operate on the mantissa and exponent of the operands independently
 - High cost in terms of execution cycles and energy
 - Many more operations than for direct integer operations
 - Longer execution time \rightarrow more energy (E = P · t)
- Floating point has a <u>much</u> larger dynamic range

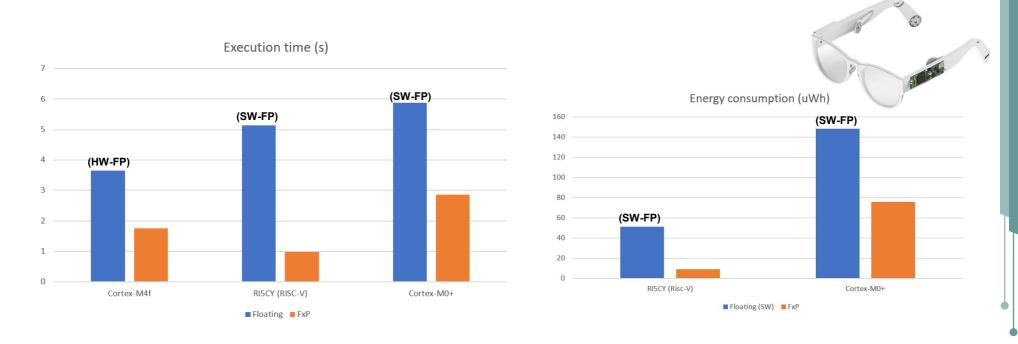
1920 (15x2⁷)

Max. value with 8 bits in integer positional notation is 255!

6 442 450 944 (3x2³¹) For exp=2³¹, it's not possible to represent any numbers between 0, 2³¹, 2x2³¹ and 3x2³¹!!

Efficiency of Fixed-point vs. floating-point

- Advantage: (Much) faster execution time in the NDS.
- Problem: The reduced dynamic range can introduce errors.

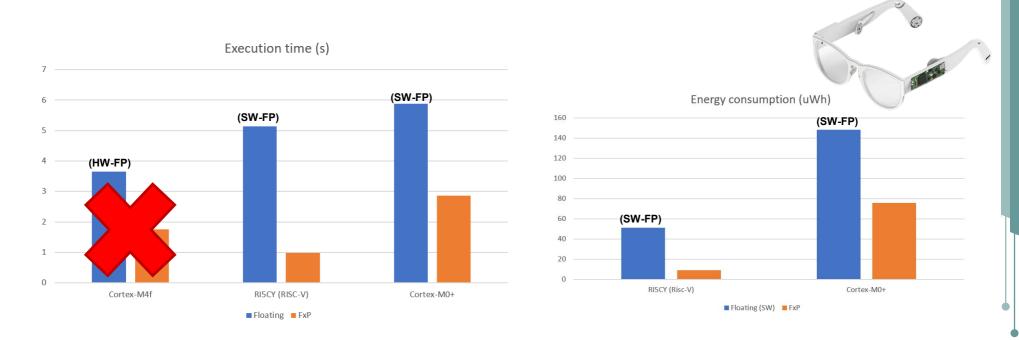


Example: Cognitive workload monitoring with the e-Glass wearable device. The Cortex-M4f has HW support for floating-point (FPU), while the RI5CY and Cortex-M0+ execute floating-point operations using SW emulation.

EPFL

Efficiency of Fixed-point vs. floating-point

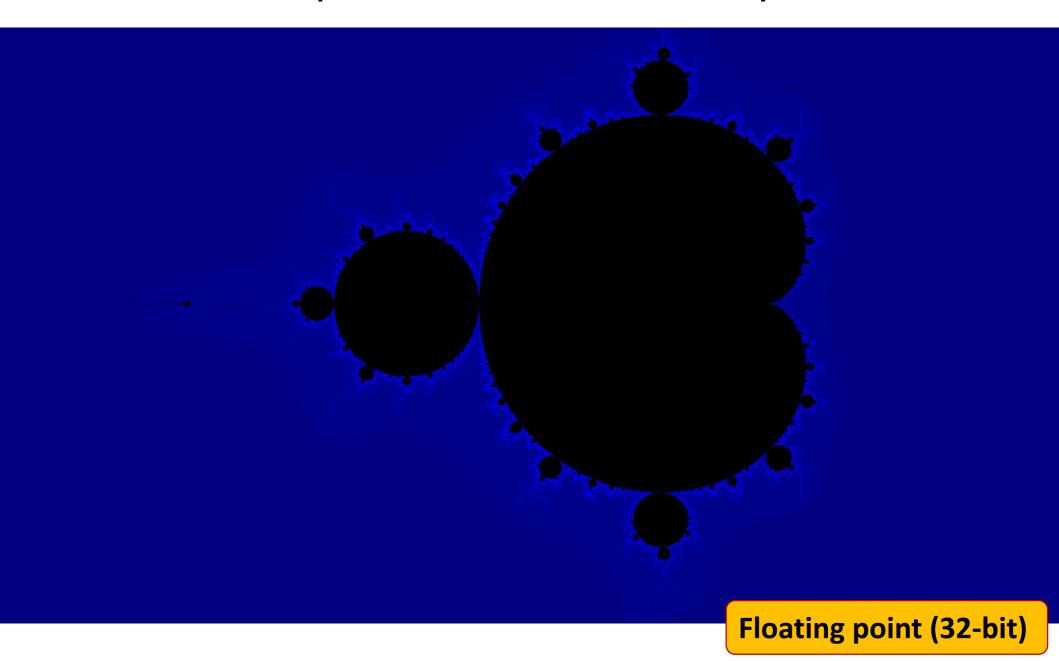
- Advantage: (Much) faster execution time in the NDS.
- Problem: The reduced dynamic range can introduce errors.



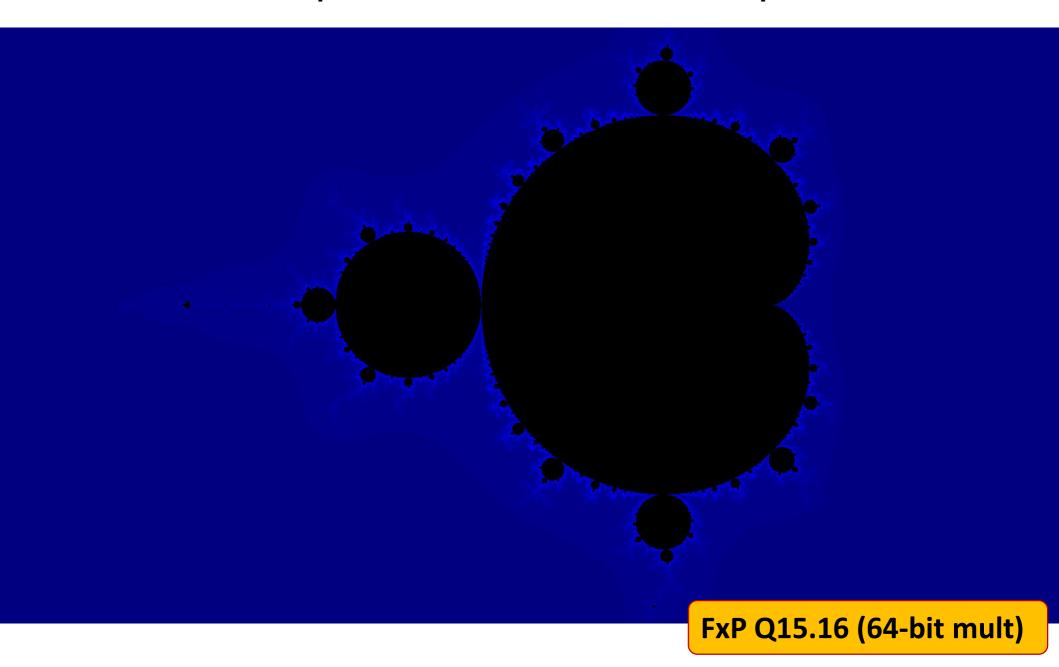
With careful optimization, HW-FP on the Cortex-M4f is faster than FxP

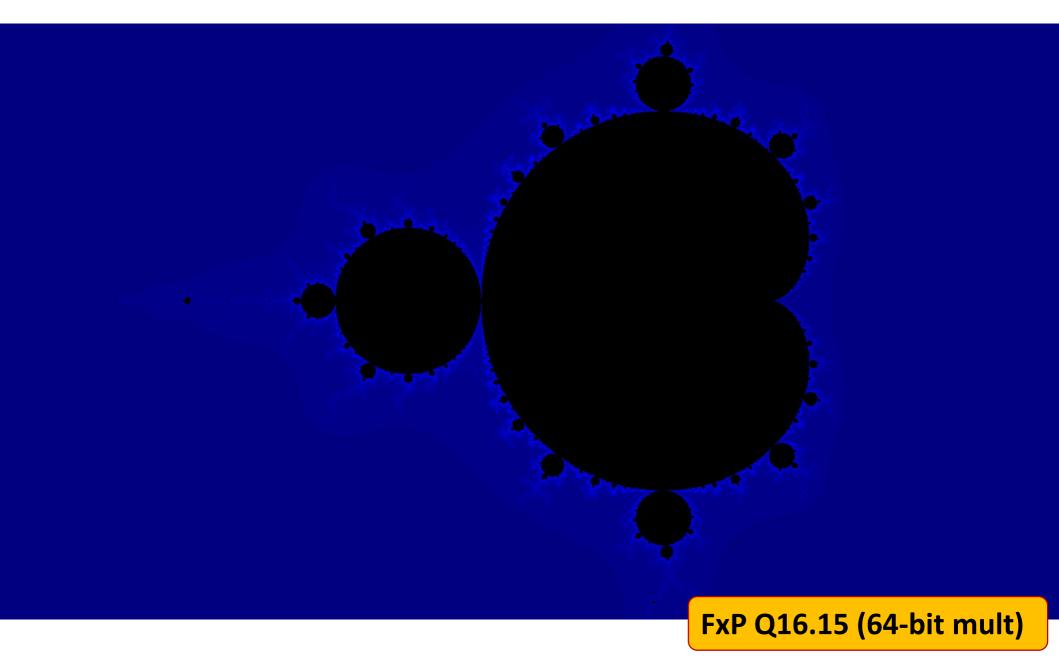
If the CPU contains HW support for floating point, then it <u>may</u> be faster than FxP

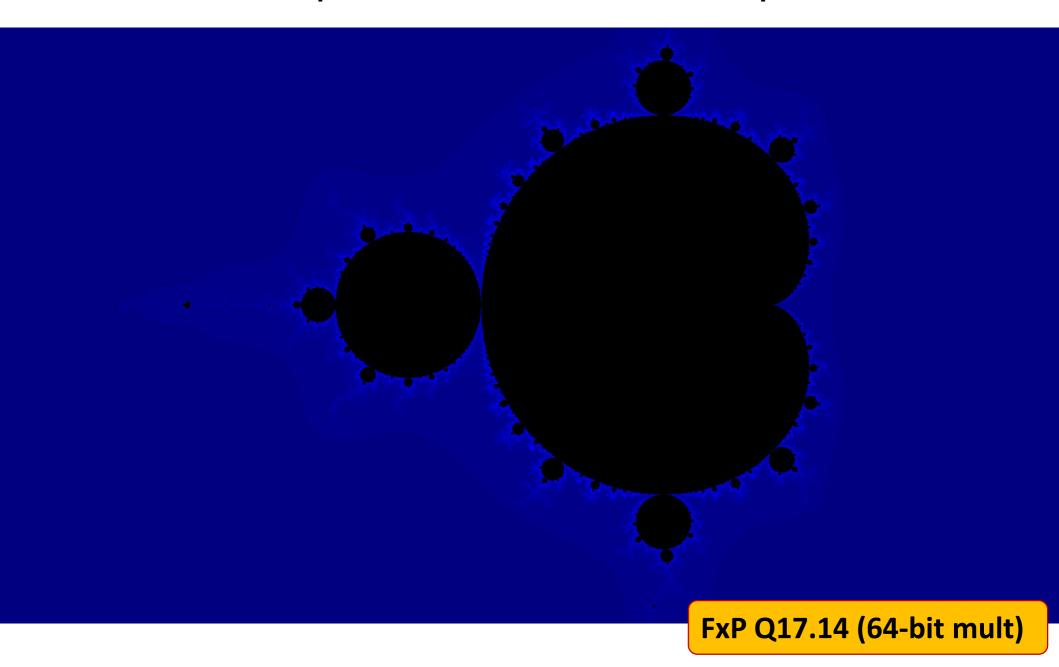
The NDS CPU does not have HW support for floating point → FxP is faster

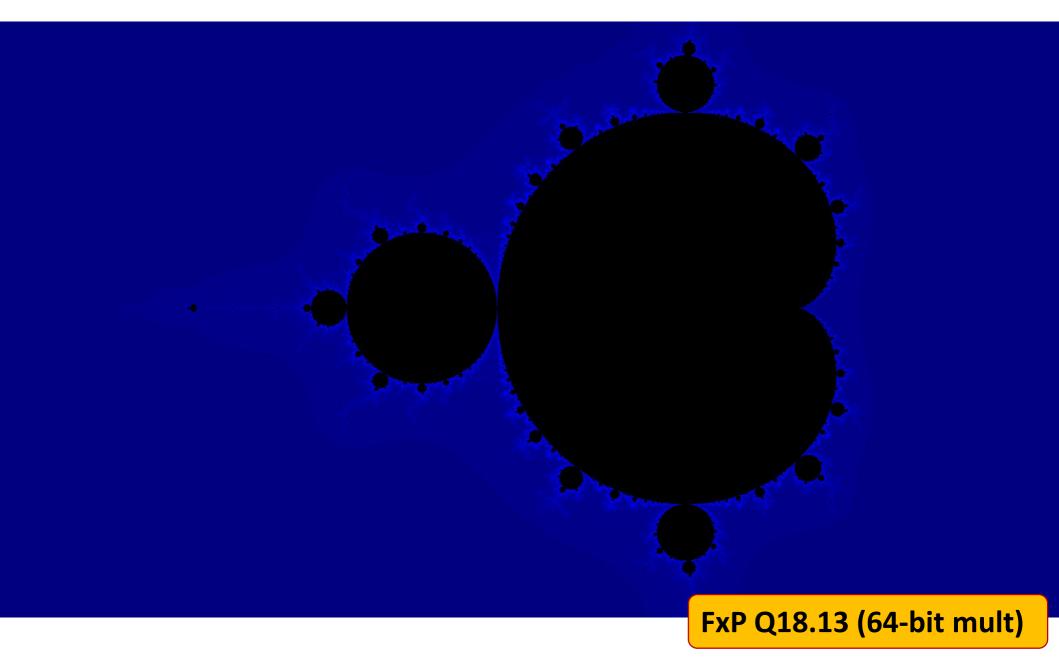


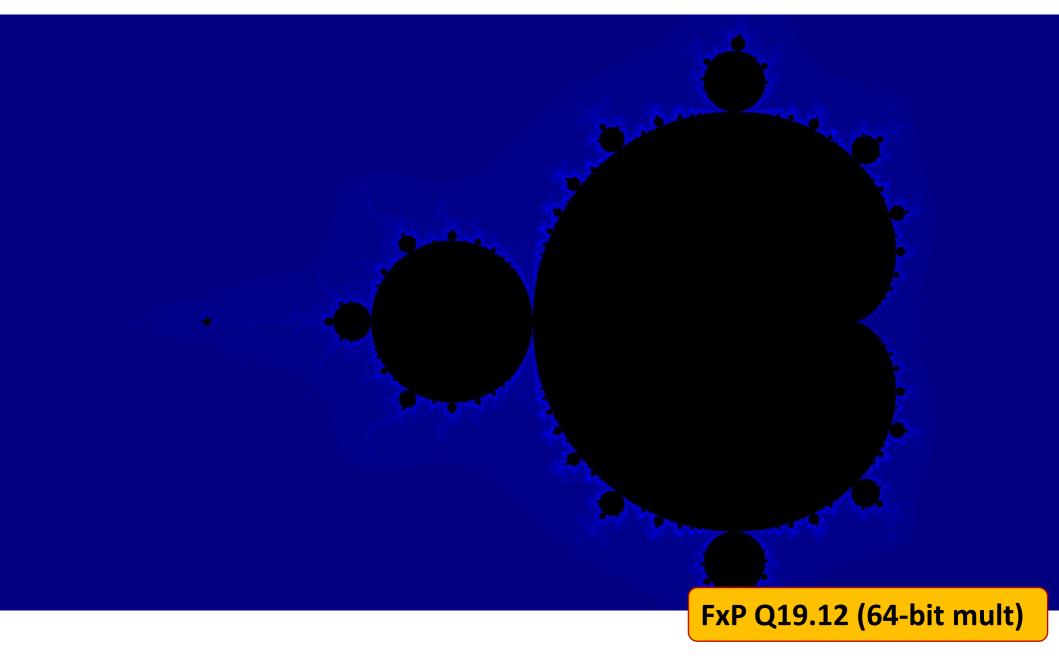
FxP Q11.20 (64-bit mult)

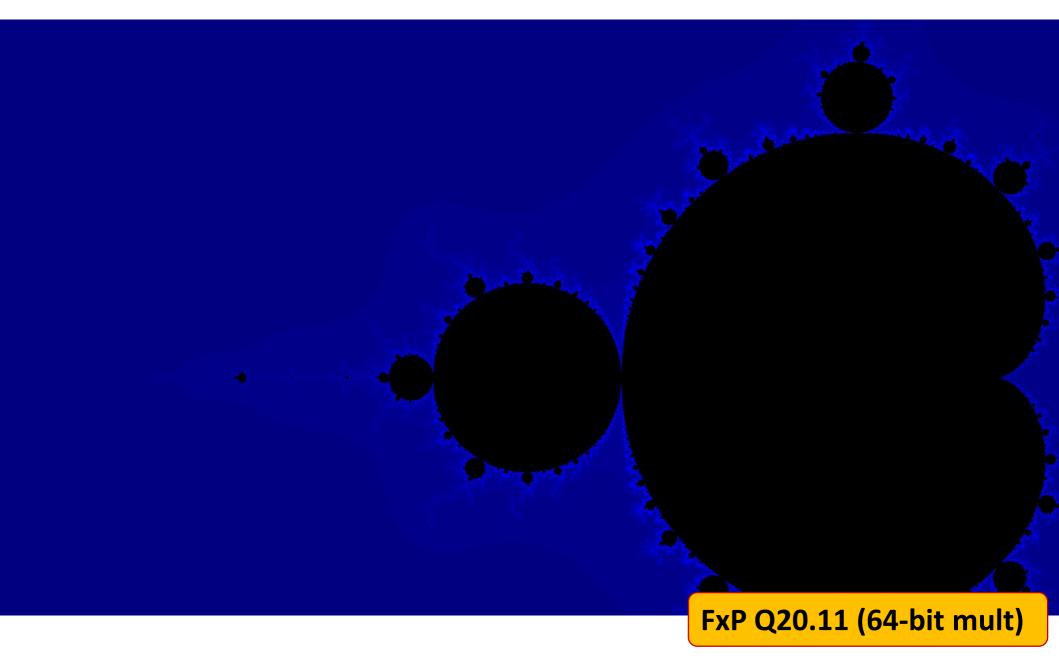












The coordinates in the complex plane that correspond to the screen coordinates of each pixel are also computed in FxP. As we reduce the number of decimals, the precision of the coordinates changes!

HOW CAN WE FIX THIS?

FxP Q21.10 (64-bit mult)

Fractal execution times (NDS)

	NO THUMB		THUMB	
Arithmetic	Time (s)	Improvement (over FP)	Time (s)	Improvement (over FP)
FP (32 bits)	103	1 x	105	1.0 x
FxP 16 bits: Q7.8	8	13 x	30	3.5 x
FxP 16 bits: Q5.10	6	17 x		
FxP 32 bits, mult-32: Q23.8	6	17 x	29	3.6 x
FxP 32 bits, mult-32: Q21.10	5	21 x	30	3.5 x
FxP 32 bits, mult-32: Q11.20	11	9 x	83	1.3 x
FxP 32 bits, mult-64: Q21.10	10	10 x	84	1.2 x

Why is FxP popular for CNNs?

- Reducing the model's memory footprint:
 - From 32-bit floating point
 - To FP-16: 2x reduction.
 - To FxP 16-bit: 2x reduction.
 - To FxP 8-bit: 4x reduction.
 - To FxP 4-bit: 8x reduction.
 - To binary (1-bit): 32x reduction.
 - Less memory in embedded devices.
 - Less memory bandwidth during inference, higher speed, less energy.
- If single instruction multiple data (SIMD) support exists, multiplied performance for the same energy!
 - FxP 8-bit with 32-bit SIMD registers: 4x faster than FP-32, (almost) the same energy.

EPFL Why FxP instead of FP to reduce bit-width?

- Reduced bit-width is often not supported for FP.
 - Modern GPUs and processors increasingly support FP-16, FP-8 or even smaller sizes, particularly for DNNs.¹
 - But not commonplace (yet).
 - And still requires dedicated HW.
- Embedded HW without floating point support.
 - Reuses integer functional units.
 - More energy and area efficient.
- Potential issues:
 - FxP has smaller dynamic range.
 - May produce under/overflows.
 - Or saturates too big or too small results.
 - Requires previous characterization of dynamic range.

As in the previous "wandering" fractal example...

Impact on DNN accuracy of FxP quantization

- Accuracy may be reduced.
 - Fixed point is not necessarily less accurate than floating point, but:
 - Smaller dynamic range.
 - Less precision as the bit-width is reduced.
- Experiments on a convolutional neural network (CNN) based industrial system:¹
 - Weights can be stored with only decimals (±0.x).
 - Activations accumulate, hence they require integer bits.
 - Accuracy results:
 - Floating point 32-bit (baseline): 99.8 %
 - Fixed point 8-bit weights, 16-bit activations: 99.8 %
 - Fixed point 4-bit weights, 8-bit activations: 92.7 %
 - With no impact on accuracy, we can reduce the model size by a factor of 4, activation buffers by 2 and execute 2 times faster (with SIMD).

Content of Session

- 1. What is and why do we need fixed-point arithmetic?
- 2. Introduction to numeric representations
- 3. Arithmetic in fixed-point

Numeric representations

- Integers
 - Positional notation.

0	1	0	1
2 ³	2 ²	21	20

- Floating point (FP, 32-bit)
 - The fractional point can be moved dynamically.
 - Sign, exponent and fraction (significand) of fixed sizes.
 - Smallest positive normal number: 1.1754943508x10⁻³⁸
 - Range for subnormals: $\pm [1.175494210 \times 10^{-38}, 1.4012984643 \times 10^{-45}]$
- Fixed point (FxP): Positional notation
 - Fractional point divides integer and fractional parts with fixed bit-widths: It's a convention!
 - Range depends on number of bits for integer and fractional parts.

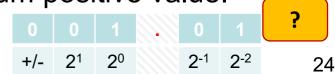
0	1	0	1
21	20	2-1	2-2

EPFL

Characterization of numeric representations

- Word length
 - Number of bits in the representation: uint32_t, float, Q_{15.16}
- Range
 - Difference between most positive and most negative numbers.
- Resolution
 - Smallest non-zero magnitude representable.
 - FP32: ±1.4012984643x10⁻⁴⁵
 - FxP (1+15+16 bits): ± 0.0000152587890625 (2-16)
- Accuracy

- To de de la composition de la contraction de la
- For floating point, accuracy changes with the absolute value!
- Dynamic range
 - Ratio between maximum value and minimum positive value.



Characteristics of numeric representations: integers

- Unsigned, signed and magnitude, 2's complement.
- Range:
 - Unsigned: [2^N-1, 0]
 - 2's complement: [2^{N-1}-1, -2^{N-1}]
- Resolution: ±1
- Accuracy: 1.
- Dynamic range: (2^{N-1}-1)/1
 - For 32 bit, 2's complement: 2147483647 / 1 ~ 10⁹

Characteristics of numeric representations: floating point

- IEEE 754 defines bit sizes: (16), 32, 64, (80), 128, 256.
- For 32 bit (float):
 - 1 sign bit, 8 exponent bits, 23+1 significand bits ("normals").
- Range: [3.4028234664x10³⁸, -3.4028234664x10³⁸]
- Resolution:
 - Smallest positive normal number: 1.1754943508x10⁻³⁸
 - Range for subnormals: $\pm [1.175494210x10^{-38}, 1.4012984643x10^{-45}]$
- Dynamic range:
 - **3**.4028234664 \times 10³⁸ / 1.1754943508 \times 10⁻³⁸ \sim 10⁷⁶

Characteristics of numeric representations: fixed point

- Same size as native integers. Unsigned/signed (2's complement).
- Example: Q_{15.16}
 - 1 sign bit, 15 integer bits, 16 decimal bits.
- Range: [32767.999984741210938, -32768]
- Resolution:
 - Smallest positive normal number: 0.0000152587890625 (2⁻¹⁶)
- Accuracy: 0.0000152587890625
- Dynamic range:
 - \blacksquare 32767.999984741210938 / 0.0000152587890625 \sim 109
 - The same than the integer representation.

Q_{14.17}, Q_{0.31} ???

If we are using the same 32 bits, how is it possible to have a dynamic range of 10⁷⁶ with FP32?

Representable range and density

Representable ranges:

Density of representation:

- How many different numbers can I represent in each case?
- uint32 t: One value every integer.
- Q_{15,16}: One value every 0.0000152587890625
- Floating point 32 bit:
 - (2²⁴, 0]: Every integer is representable.
 - $-(2^{25}, 2^{24}]$: Only even integers are representable.
 - (2²⁶, 2²⁵]: Only one out of four integers is representable.

Floating point representation

Pros:

- Large dynamic range.
- Dynamic range adaptation.
- Ideal when dealing with differing or unknown magnitudes.
- Saturation to ±∞

Cons:

- Arithmetic is different than integers.
 - Requires specific HW.
- Operations are more complex.
 - Larger area and higher energy consumption.
 - Dealing with infinites, NaNs, normal/subnormal numbers.
 - Addition requires aligning operands!
 - Re-normalization after every operation.
- Not supported in many embedded platforms.
- Complex SW emulation.

Particularities of FP representations

 The varying density of the representation may produce unexpected results.

```
#include <stdio.h>
int main(int argc, char ** argv)
     float a = 0.0, b = 1.0, old = -1.0;
     while (old != a) {
          old = a:
          a += b:
     printf("%0.9f\n", a);
     printf("0x%08X\n", *((unsigned int*) &a));
     return 0;
```

Will this program end?

Screen output 16777216.000000000 0x4B800000

WHY?

EPFL

Density of representation in FP

- 16 777 216 in FP32 is 0x4B800000:
 - $0\ 100 1011 1000 0000 0000 0000 0000 0000$
 - Sign: 0, positive.

Exponent in "excess-127" representation

- Exponent: 151-127=24
- Significand: 1.0
 - Implicit "1." in floating point representations.
- Value: 1-0000-0000-0000-0000-0000 = 16 777 216
- Next possible binary value is 0x4B800001:
 - 0.100 1011 1000 0000 0000 0000 0000 0001
 - Sign: 0, positive.
 - Exponent: 151-127=24
- Not possible to represent the value 16 777 217!
 - Significand: 1.0000000000000000000000001
 - Value: 1-0000-0000-0000-0000-0010 = 16 777 218

the significant, then shift the fractional point "exponent" places.

Add the implicit "1." in front of

EPFL

Special values in FP representations

- IEEE 754 defines several special values:
 - Infinites
 - Exp = 1...1, Significand = 0
 - NaNs ("Not-a-Number")
 - Exp = 1...1, Significand \neq 0
 - Positive and negative zeros
 - Exp = Minimum allowed exp 1
 - Significand = 0
 - Subnormal numbers
 - To avoid jump from minimum normalized number $(1.1754943508x10^{-38})$ to 0.
 - Exp = Minimum allowed exp 1
 - Significand = Value represented with leading zeroes.
- Binary to text (round to even!):
 - 32 bits (float): Print with 9 decimal digits, round to even.
 - 64 bits (double): Print 17 decimal digits.

This procedure keeps full precision between float/double and text.

Fixed point representation

Pros:

- Positional notation, no special values.
- (Almost) Same HW than integer operations.
- Easy SW implementation.
- Flexibility of representation.
 - Position of the fractional point by convention!

Cons:

- Requires that the dynamic range of the values is known.
- Possible to change dynamic range
 - Change convention regarding position of fractional point.
 - But values can over/underflow.
- May overflow (saturation may be introduced if required).
- Multiplication and division require 2xN bits in intermediate operands.

EPFL

Is FP more precise than FxP?

- Not necessarily! With 32 bits:
 - IEEE 754 float uses 24 significand bits.
 - Fixed point Q_{0.31} (Q₃₁) has 31 decimal bits.
 - For numbers in the range (1, -1):
 - Q_{0.31} can represent accurately more numbers than float.
- The minimum representable values are:
 - Float: 1.4012984643x10⁻⁴⁵
 - $\mathbf{Q}_{0.31}$: 0.0000000004656612873077392578125 (~10⁻⁹)
- As seen before, the addition of two representable numbers with different magnitudes:
 - Can return one of the two terms in floating point.
 - Will always return a correct number in FxP
 - But it can over/underflow!!

Other options: "Brain floating-point" format (bfloat16)

- Format proposed by Google specifically for DNNs.
- Based on IEEE-754 float (FP32).
 - Truncates the mantissa size.
 - Without changing the exponent size.
- Motivational insight:
 - For DNN applications, a reduced mantissa is enough as long as it is possible to still represent very small numbers without rounding to zero.
 - Avoid the "vanishing gradient" problem.
- Support: Google TPUs, Intel AVX-512 BF16, TensorFlow, ARM v8.6-A, ...

EPFL

Bfloat16 bit format

Sign / exponent / mantissa

- FP32: 1 + 8 + 23 (24)
 - = 0.100 1011 1000 0000 0000 0000 0000 0000
 - Positive range: ~3x10³⁸ to ~1x10⁻³⁸
- FP16: 1 + 5 + 10 (11)
 - **•** 0 100 1011 1000 0000
 - Positive range: 65 504 to ~5.96x10⁻⁸
- Bfloat16 (bFP16): 1 + 8 + 7 (8)
 - 0 100 1011 1000 0000
 - Positive range: ~3x10³⁸ to ~1x10⁻³⁸

Bfloat16 pros and cons

Pros:

- Smaller mantissa requires lower area and power to implement arithmetic operations.
- Similar dynamic range than FP32: ~3x10³⁸ to ~1x10⁻³⁸
 - Similar error behavior than FP32.
 - No need to adjust the loss function during training.
- Fast conversion to/from FP32:
 - Keep exponent and truncate mantissa.
- Support for infinites, NaNs and saturation, as in FP.

Cons:

- Worst representation for integer numbers (just 7 bits!).
- Still requires dedicated HW, different than integer units.
- More complex implementation than integer arithmetic (e.g., infinites, normalization, NaNs).

Content of Session

- 1. What is and why do we need fixed-point arithmetic?
- 2. Introduction to numeric representations
- 3. Arithmetic in fixed-point

Nomenclature

- There are multiple ways to identify fixed-point numbers.
- In general, we need to identify the word length, the number of integer bits and the number of decimal bits.
- Common nomenclatures are:
 - Q_{i,i}: i integer bits and j decimal bits.
 - Q_i: j decimal bits (somewhat ambiguous).
- Also, indicate the presence of a sign bit.

Representation examples

Q3.4

SIGN

4 2 1

0.5 0.25 0.125 0.0625

Range: [7.9375, -8]

Ex: 0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, ...

Q0.7

SIGN

0.5	0.25	0.125	0.0625	0.03125	0.015625	0.0078125
-----	------	-------	--------	---------	----------	-----------

Range: [0.9921875, -1]

• Q1.2 (4 bits)

Range: [1.75, -2]

Values: 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25, 0, -0.25, -0.5, -0.75, -1, -1.25, -1.5, -1.75, -2.

Choosing the decimal point position

- Requires the analysis of the dynamic range of numbers to represent.
- Trade-off between:
 - Dynamic range.
 - Number of distinct values that can be accurately represented.

Implementation: Addition/Subtraction

- Addition in FxP → implemented with an addition in C.
 - Because the notation is positional.

Reutilization of the integer ALUs!

- No need to align the operands. No re-normalization.
- The position of the decimal point is a convention.
- In Q_{2,3}: (2's complement!)

0.875		0 0	0	1	1	1	(3. C	75						0	0	0	1	1	1
1.5	+	0 0	1	1	0	0		-0.	25					+	1	1	1	1	1	0
2.375		0 1	0	0	1	1		0.6	25						0	0	0	1	0	1
			0.	87	5			0	0	0	1	1	1							
				3.	5		+	0	1	1	1	0	0							
			-3.	62	5			1	0	0	0	1	1			OV	ERF	LO	W!	

Example: Addition

- Unsaturated addition and subtraction are exactly the same as their integer counterparts.
- No distinction between unsigned/signed.

Implementation: Addition/Subtraction with saturation

- FxP addition and subtraction can produce over/underflow.
 - In assembly, simply check the OV bit of the processor.
- Saturation can be achieved with a wider representation and introducing a check.
 - More expensive, but simulates the behavior of floating point arithmetic and avoids catastrophic errors.

```
int8_t addSatSigned(int8_t a, int8_t b)
{
    int16_t res;

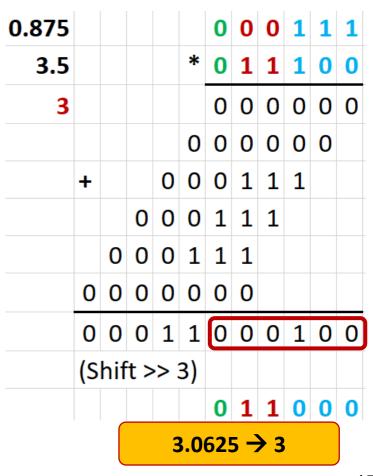
    res = (int16_t)a + (int16_t)b;
    if (res > 0x7F)
        res = 0x7F;
    if (res < 0xFF80)
        res = 0xFF80;

    return (int8_t)res;
}</pre>
```


Implementation: Multiplication

- Multiplication requires 2xN result bits.
- Use appropriate unsigned/signed integer variables!
- Multiply the two numbers normally.
- The result has double number of integer and fractional bits than the operands.
- To recover the size, shift right by the number of fractional bits.
 - This is equivalent to dividing by 2^N, discarding the least significant bits.

■ In Q_{2,3}:



Example: Multiplication

- Multiplication can overflow. To address this, we can:
 - Sign-extend the operands to a larger size,
 - multiply,
 - shift in the result size and
 - then convert back to the operand size.
 - May be slower (specially on 32-bit processors).
- Use an arithmetic shift!
 - Automatic if signed/unsigned variables are used appropriately.

Example: Printing values

- We can convert FxP values to floating point, which are understood by the standard libraries.
 - SW emulation may be required!
- Simply separate the sign, integer and fractional parts.

```
//////
// Convert FxP (2's complement) to floating point.
                                                      // Extract fractional part.
double Fxp8Bit2Double(uint8 t value, uint8 t intBits)
                                                      power = 0.5;
                                                      mask = 1 << (decimalBits - 1);</pre>
 uint8 t decimalBits, mask, negative = 0;
                                                      while (decimalBits > 0) {
 double res = 0.0, power;
                                                        if (value & mask)
                                                          res += power;
 if (value & 0x80) {
                                                        power \neq 2.0;
   negative = 1;
                                                        value <<= 1;</pre>
   value = (~value) + 1;
                                                        -- decimalBits;
 // Extract integer part.
                                                      return negative ? -res : res;
 decimalBits = 8 - intBits - 1;
 res += value >> decimalBits;
                                                   Easier/faster implementation:
                                      #define FixedToFloat(i, shift) ((i) / (float)(1 << (shift)))</pre>
                                      #define FloatToFixed(i, shift) ((i) * (float)(1 << (shift)))</pre>
```

Why/when does this work?

Example Code

```
Additions
                                                         // ADDITIONS.
int main(int argc, char **argv)
                                                         value1 = 0x65;
                                                         value2 = 0xFFFFFFE7;
 int32 t value1, value2, res;
                                                         res = value1 + value2;
                                                         printf("\n---\nValue1: 0x%02X - Value2: 0x%02X\n",
                                                           value1, value2);
 Encodings
                                                         // 028.3: 12.625 + (-3.125);
 // Encoding examples.
 value1 = 0x0C; // 3.0
                                                         printf("Q28.3: %f + %f = %f\n",
 printf("Binary: %hu - Decimal: %f\n", (uint16_t)value1,
                                                           FixedToFloat(value1, 3), FixedToFloat(value2, 3),
   FixedToFloat(value1, 5));
                                                           FixedToFloat(res, 3));
 value1 = 0x0D; // 3.25
 printf("Binary: %hu - Decimal: %f\n", (uint16 t)value1,
                                                         // 029.2: 12.625 + (-3.125);
   FixedToFloat(value1, 5));
                                                         printf("029.2: \%f + \%f = \%f \ n",
 value1 = 0x65; // 12.625
                                                           FixedToFloat(value1, 2), FixedToFloat(value2, 2),
 printf("Binary: %hu - Decimal: %f\n", (uint16 t)value1,
                                                           FixedToFloat(res, 2));
   FixedToFloat(value1, 4));
 value1 = 0xFFFFFF9B; // -12.625
                                                         // 030.1: 12.625 + (-3.125);
 printf("Binary: %hu - Decimal: %f\n", (uint16_t)value1,
                                                         printf("030.1: \%f + \%f = \%f \ ,
   FixedToFloat(value1, 4));
                                                           FixedToFloat(value1, 1), FixedToFloat(value2, 1),
 value1 = 0xFFFFFF99; // -12.875
                                                           FixedToFloat(res, 1));
 printf("Binary: %hu - Decimal: %f\n", (uint16 t)value1,
   FixedToFloat(value1, 4));
                                                         // Q24.7: 12.625 + (-3.125);
 value1 = 0x67; // 12.875
                                                         printf("024.7: %f + %f = %f\n",
 printf("Binary: %hu - Decimal: %f\n", (uint16_t)value1,
                                                           FixedToFloat(value1, 7), FixedToFloat(value2, 7),
   FixedToFloat(value1, 4));
                                                          FixedToFloat(res, 7));
```


Example Code (Cont.)

```
Multiplications
  // MULTIPLICATIONS.
  value1 = 0x02;
  value2 = 0x04;
  printf("\n---\nValue1: 0x%02X - Value2: 0x%02X\n",
value1, value2);
  // 028.3: 0.25 * 0.5 = 0.125;
  res = FixedMult32on32(value1, value2, 3);
  printf("028.3: \%f * \%f = \%f (0x%02X)\n",
    FixedToFloat(value1, 3), FixedToFloat(value2, 3),
    FixedToFloat(res, 3), (uint16 t)res);
  // 030.1: 1.0 * 2.0 = 2.0;
  res = FixedMult32on32(value1, value2, 1);
  printf("030.1: \%f * \%f = \%f (0x%02X)\n",
    FixedToFloat(value1, 1), FixedToFloat(value2, 1),
    FixedToFloat(res, 1), (uint16 t)res);
  // 024.7: 0.015625 * 0.03125 = 0.00048828125 --> 0
  res = FixedMult32on32(value1, value2, 7);
  printf("024.7: %f * %f = %f (0x\%02X)\n",
    FixedToFloat(value1, 7), FixedToFloat(value2, 7),
    FixedToFloat(res, 7), (uint16 t)res);
  value1 = 0x65;
  value2 = 0x02:
  printf("\nValue1: 0x%02X - Value2: 0x%02X\n", value1,
value2);
\Rightarrow // Q28.3: 12.625 * 0.25 = 3.15625 --> 3.125;
  res = FixedMult32on32(value1, value2, 3);
  printf("028 3: %f * %f = %f (0x%02X)\n",
    FixedToFloat(value1, 3), FixedToFloat(value2, 3),
    FixedToFloat(res, 3), (uint16 t)res);
```

```
// 024.7: 0.7890625 * 0.015625 = 0.0123291015625 -->
  // 0.0078125
 res = FixedMult32on32(value1, value2, 7);
 printf("024.7: %f * %f = %f (0x\%02X)\n",
   FixedToFloat(value1, 7), FixedToFloat(value2, 7),
   FixedToFloat(res, 7), (uint16 t)res);
 value1 = 0x65;
 value2 = 0xFFFFFFFE;
 printf("\nValue1: 0x%02X - Value2: 0x%02X\n", value1,
value2);
 // 028.3: 12.625 * -0.25 = -3.15625 --> -3.25;
 res = FixedMult32on32(value1, value2, 4);
 printf("028.3: \%f * \%f = \%f (0x%02X)\n",
   FixedToFloat(value1, 3), FixedToFloat(value2, 3),
   FixedToFloat(res, 3), (uint16 t)res);
 // Q24.7: 0.7890625 * -0.015625 = -0.0123291015625 -->
 // -0.015625
 res = FixedMult32on32(value1, value2, 0);
 printf("024.7: %f * %f = %f (0x\%02X)\n",
   FixedToFloat(value1, 7), FixedToFloat(value2, 7),
   FixedToFloat(res, 7), (uint16 t)res);
 return 0;
```

The same binary value is interpreted differently according to the chosen representation.

The binary operations are the same!

Example: Results

```
Binary: 12 - Decimal: 3.000000
Binary: 13 - Decimal: 3.250000
Binary: 101 - Decimal: 12.625000
Binary: 155 - Decimal: -12.625000
Binary: 153 - Decimal: -12.875000
Binary: 103 - Decimal: 12.875000
Value1: 0x65 - Value2: 0xFFFFFFF7
028.3: 12.625000 + -3.125000 = 9.500000
                                               Exact results
029.2: 25.250000 + -6.250000 = 19.000000
030.1: 50.500000 + -12.500000 = 38.000000
024.7: 0.789062 + -0.195312 = 0.593750
Value1: 0x02 - Value2: 0x04
Q28.3: 0.250000 * 0.500000 = 0.125000 (0x01)
Q30.1: 1.000000 * 2.000000 = 2.000000 (0x04)
                                                  Underflow
Q24.7: 0.015625 * 0.031250 = 0.000000 (0x00)
Value1: 0x65 - Value2: 0x02
                                                             (3.15625)
028.3: 12.625000 * 0.250000 = 3.125000 (0x19)
Q24.7: 0.789062 * 0.015625 = 0.007812 (0x01)
                                                         (0.01232909375)
                                                        Effect of shifting is
Value1: 0x65 - Value2: 0xFFFFFFE
Q28.3: 12.625000 * -0.250000 = -3.250000 (0xFFE6)
                                                            truncation.
Q24.7: 0.789062 * -0.015625 = -0.015625 (0xFFFE)
```


Questions?

Let's use fixed point arithmetic in the NDS!