
1Prof. David Atienza Alonso, SEL-STI

Systèmes Embarqués Microprogrammés

Fixed Point Arithmetic for Embedded
Systems

©ESL/EPFL 2

Content of Session

1. What is and why do we need fixed-point arithmetic?
2. Introduction to numeric representations
3. Arithmetic in fixed-point

©ESL/EPFL 3

What is fixed-point (FxP)?

 Given a fixed number of digits in base 10, we can represent
integer numbers by:

 We can represent decimal numbers if we multiply implicitly by
a negative power of 10:

 We can do the same in binary:

 The position of the decimal point is implicit (and fixed).
 But we can modify it by explicitly shifting.

5
103

4
102

2
101

9
100

5
101

4
100

2
10-1

9
10-2

1
21

0
20

1
2-1

1
2-2

5429

54.29

2.75

Positional notation

©ESL/EPFL 4

What is floating-point (FP)?

 Floating point numbers are divided into two parts:
 Significant digits (a.k.a. mantissa)
 Exponent (a power of 2)

 A sequence of binary digits multiplied by [2 to the power of]
the exponent:

 The position of the decimal point is determined by the
exponent value

144
(9x24)

1001
Mantissa = 9

100
Exponent = 4

0
Sign +/-

576
(9x26)

1001
Mantissa = 9

110
Exponent = 6

0
Sign +/-

Floating point is a
non-positional

notation!

©ESL/EPFL 5

Comparison between FxP and FP

Fixed Point
 Reuse integer arithmetic units

 Both are positional
 Reuse integer registers

 SW can easily define its own
representation
 Because the position of the

decimal point is implicit (i.e.,
hidden from the HW)

 SW decides how to interpret the
numbers
− Always unsigned or 2’s complement

 Easy to implement SIMD
model for smaller bitwidths

Floating Point
 Requires specific HW units

 And the logic is more complex
 Requires new set of registers

 (Just common practice)
 Difficult to define non-

standard configurations that
differ from what is supported
by the HW

How can we convert an integer
adder into a SIMD adder?

©ESL/EPFL 6

 Floating point requires different HW units
 High cost in terms of area and power

− Higher leakage due to larger area
− Higher dynamic power due to more complex operation

 But it can also be executed in “SW-emulation” mode
 Bit-manipulation operations to separate and operate on the mantissa

and exponent of the operands independently
 High cost in terms of execution cycles and energy

− Many more operations than for direct integer operations
− Longer execution time  more energy (E = P ∙ t)

 Floating point has a much larger dynamic range
1920

(15x27)
1111

Mantissa = 15
111

Exponent = 7
0

Sign +/-
Max. value with 8 bits in integer

positional notation is 255!

6 442 450 944
(3x231)

11
Mantissa = 3

11111
Exponent = 31

0
Sign +/-

For exp=231, it’s not possible to
represent any numbers between 0, 231 ,

2x231 and 3x231 !!

We can play with the dynamic range of our representation,
but we can represent only 256 distinct values with 8 bits!

Comparison between FxP and FP

©ESL/EPFL 7

Efficiency of Fixed-point vs. floating-point

 Advantage: (Much) faster execution time in the NDS.
 Problem: The reduced dynamic range can introduce errors.

Example: Cognitive workload monitoring with the e-Glass wearable device. The Cortex-M4f has HW support for floating-point (FPU),
while the RI5CY and Cortex-M0+ execute floating-point operations using SW emulation.

Data produced by Stefano Albini and Dimitrios Samakovlis, ESL/EPFL.

(SW-FP)

(SW-FP)

(HW-FP)

(SW-FP)

(SW-FP)

©ESL/EPFL 8

Efficiency of Fixed-point vs. floating-point

 Advantage: (Much) faster execution time in the NDS.
 Problem: The reduced dynamic range can introduce errors.

Data produced by Stefano Albini and Dimitrios Samakovlis, ESL/EPFL.

With careful optimization, HW-FP on the
Cortex-M4f is faster than FxP

If the CPU contains HW support for floating
point, then it may be faster than FxP

(SW-FP)

(SW-FP)

(HW-FP)

(SW-FP)

(SW-FP)

The NDS CPU does not have HW support for
floating point  FxP is faster

©ESL/EPFL 9

Fixed-point arithmetic to compute fractals

Floating point (32-bit)

©ESL/EPFL 10

Fixed-point arithmetic to compute fractals

FxP Q11.20 (64-bit mult)

©ESL/EPFL 11

Fixed-point arithmetic to compute fractals

FxP Q15.16 (64-bit mult)

©ESL/EPFL 12

Fixed-point arithmetic to compute fractals

FxP Q16.15 (64-bit mult)

©ESL/EPFL 13

Fixed-point arithmetic to compute fractals

FxP Q17.14 (64-bit mult)

©ESL/EPFL 14

Fixed-point arithmetic to compute fractals

FxP Q18.13 (64-bit mult)

©ESL/EPFL 15

Fixed-point arithmetic to compute fractals

FxP Q19.12 (64-bit mult)

©ESL/EPFL 16

Fixed-point arithmetic to compute fractals

FxP Q20.11 (64-bit mult)

©ESL/EPFL 17

Fixed-point arithmetic to compute fractals

FxP Q21.10 (64-bit mult)

The fractal moves as we change the
numeric representation!

The coordinates in the complex plane that correspond to the screen
coordinates of each pixel are also computed in FxP. As we reduce
the number of decimals, the precision of the coordinates changes!

HOW CAN WE FIX THIS?

©ESL/EPFL 18

Fractal execution times (NDS)

NO THUMB THUMB

Arithmetic Time (s) Improvement
(over FP)

Time (s) Improvement
(over FP)

FP (32 bits) 103 1 x 105 1.0 x

FxP 16 bits: Q7.8 8 13 x 30 3.5 x
FxP 16 bits: Q5.10 6 17 x
FxP 32 bits, mult-32: Q23.8 6 17 x 29 3.6 x
FxP 32 bits, mult-32: Q21.10 5 21 x 30 3.5 x
FxP 32 bits, mult-32: Q11.20 11 9 x 83 1.3 x

FxP 32 bits, mult-64: Q21.10 10 10 x 84 1.2 x

©ESL/EPFL 19

Why is FxP popular for CNNs?

 Reducing the model’s memory footprint:
 From 32-bit floating point

− To FP-16: 2x reduction.
− To FxP 16-bit: 2x reduction.
− To FxP 8-bit: 4x reduction.
− To FxP 4-bit: 8x reduction.
− To binary (1-bit): 32x reduction.

 Less memory in embedded devices.
 Less memory bandwidth during inference, higher speed, less energy.

 If single instruction multiple data (SIMD) support exists,
multiplied performance for the same energy!
 FxP 8-bit with 32-bit SIMD registers: 4x faster than FP-32, (almost)

the same energy.

©ESL/EPFL 20

Why FxP instead of FP to reduce bit-width?

 Reduced bit-width is often not supported for FP.
 Modern GPUs and processors increasingly support FP-16, FP-8 or

even smaller sizes, particularly for DNNs.1

 But not commonplace (yet).
 And still requires dedicated HW.

 Embedded HW without floating point support.
 Reuses integer functional units.
 More energy and area efficient.

 Potential issues:
 FxP has smaller dynamic range.
 May produce under/overflows.
 Or saturates too big or too small results.
 Requires previous characterization of dynamic range.

As in the previous
“wandering” fractal example…

[1] "FP8 Formats for Deep Learning," Paulius Micikevicius et al. arXiv, 2022

©ESL/EPFL 21

Impact on DNN accuracy of FxP
quantization

 Accuracy may be reduced.
 Fixed point is not necessarily less accurate than floating point, but:

− Smaller dynamic range.
− Less precision as the bit-width is reduced.

 Experiments on a convolutional neural network (CNN) based
industrial system:1
 Weights can be stored with only decimals (±0.x).
 Activations accumulate, hence they require integer bits.
 Accuracy results:

− Floating point 32-bit (baseline): 99.8 %
− Fixed point 8-bit weights, 16-bit activations: 99.8 %
− Fixed point 4-bit weights, 8-bit activations: 92.7 %

 With no impact on accuracy, we can reduce the model size by a factor
of 4, activation buffers by 2 and execute 2 times faster (with SIMD).

[1] "Impact of memory voltage scaling on accuracy and resilience of deep learning based edge devices." Benoît W. Denkinger, Flavio Ponzina,
Soumya S. Basu, Andrea Bonetti, Szabolcs Balasi, Martino Ruggiero, Miguel Peón-Quirós, Davide Rossi, Andreas Burg, David Atienza.
IEEE Design & Test, 2019. doi: 10.1109/MDAT.2019.2947282

©ESL/EPFL 22

Content of Session

1. What is and why do we need fixed-point arithmetic?
2. Introduction to numeric representations
3. Arithmetic in fixed-point

©ESL/EPFL 23

Numeric representations

 Integers
 Positional notation.

0 1 0 1
23 22 21 20

 Floating point (FP, 32-bit)
 The fractional point can be moved dynamically.
 Sign, exponent and fraction (significand) of fixed sizes.
 Smallest positive normal number: 1.1754943508x10−38

 Range for subnormals: ±[1.175494210x10−38,
1.4012984643x10−45]

 Fixed point (FxP): Positional notation
 Fractional point divides integer and

fractional parts with fixed bit-widths: It’s a
convention!

 Range depends on number of bits for
integer and fractional parts.

0 1 . 0 1
21 20 2-1 2-2

©ESL/EPFL 24

Characterization of numeric
representations

 Word length
 Number of bits in the representation: uint32_t, float, Q15.16

 Range
 Difference between most positive and most negative numbers.

 Resolution
 Smallest non-zero magnitude representable.
 FP32: ±1.4012984643x10−45

 FxP (1+15+16 bits): ±0.0000152587890625 (2-16)
 Accuracy

 Maximum difference between a real value and its representation.
 For floating point, accuracy changes with the absolute value!

 Dynamic range
 Ratio between maximum value and minimum positive value.

0 0 1 . 0 1
+/- 21 20 2-1 2-2

?

©ESL/EPFL 25

Characteristics of numeric representations:
integers

 Unsigned, signed and magnitude, 2’s complement.
 Range:

 Unsigned: [2N-1, 0]
 2’s complement: [2N-1-1, -2N-1]

 Resolution: ±1
 Accuracy: 1.
 Dynamic range: (2N-1-1)/1

 For 32 bit, 2’s complement: 2147483647 / 1 ~ 109

©ESL/EPFL 26

Characteristics of numeric representations:
floating point

 IEEE 754 defines bit sizes: (16), 32, 64, (80), 128, 256.
 For 32 bit (float):

 1 sign bit, 8 exponent bits, 23+1 significand bits (“normals”).
 Range: [3.4028234664x1038, -3.4028234664x1038]
 Resolution:

 Smallest positive normal number: 1.1754943508x10−38

 Range for subnormals: ±[1.175494210x10−38,
1.4012984643x10−45]

 Accuracy: Variable!
 Dynamic range:

 3.4028234664x1038 / 1.1754943508x10−38 ~ 1076

©ESL/EPFL 27

Characteristics of numeric representations:
fixed point

 Same size as native integers. Unsigned/signed (2’s
complement).

 Example: Q15.16
 1 sign bit, 15 integer bits, 16 decimal bits.

 Range: [32767.999984741210938, -32768]

 Resolution:
 Smallest positive normal number: 0.0000152587890625 (2-16)

 Accuracy: 0.0000152587890625
 Dynamic range:
 32767.999984741210938 / 0.0000152587890625 ~ 109

  The same than the integer representation. Q14.17, Q0.31 ???

If we are using the same 32 bits, how is it possible to
have a dynamic range of 1076 with FP32?

©ESL/EPFL 28

Representable range and density

 Representable ranges:

 Density of representation:
 uint32_t: One value every integer.
 Q15.16: One value every 0.0000152587890625
 Floating point 32 bit:

− (224, 0]: Every integer is representable.
− (225, 224]: Only even integers are representable.
− (226, 225]: Only one out of four integers is representable.

032767 -327672x109 -2x1093x1038 -3x1038

How many different numbers
can I represent in each case?

©ESL/EPFL 29

Floating point representation

 Pros:
 Large dynamic range.
 Dynamic range adaptation.
 Ideal when dealing with differing or unknown magnitudes.
 Saturation to ±∞

 Cons:
 Arithmetic is different than integers.

− Requires specific HW.

 Operations are more complex.
− Larger area and higher energy consumption.
− Dealing with infinites, NaNs, normal/subnormal numbers.
− Addition requires aligning operands!
− Re-normalization after every operation.

 Not supported in many embedded platforms.
 Complex SW emulation.

©ESL/EPFL 30

Particularities of FP representations

 The varying density of the representation may produce
unexpected results.

#include <stdio.h>

int main(int argc, char ** argv)
{

float a = 0.0, b = 1.0, old = -1.0;

while (old != a) {
old = a;
a += b;

}

printf("%0.9f\n", a);
printf("0x%08X\n", *((unsigned int*) &a));

return 0;
}

Will this program end?

Screen output
16777216.000000000
0x4B800000

WHY?

©ESL/EPFL 31

Density of representation in FP

 16 777 216 in FP32 is 0x4B800000:
 0 100 – 1011 – 1000 – 0000 – 0000 – 0000 – 0000 – 0000
 Sign: 0, positive.
 Exponent: 151-127=24
 Significand: 1.0

− Implicit “1.” in floating point representations.

 Value: 1-0000-0000-0000-0000-0000-0000 = 16 777 216
− (+1.000000000000000000000000*224 = 1000000000000000000000000)

 Next possible binary value is 0x4B800001:
 0 100 – 1011 – 1000 – 0000 – 0000 – 0000 – 0000 – 0001
 Sign: 0, positive.
 Exponent: 151-127=24
 Significand: 1.00000000000000000000001
 Value: 1-0000-0000-0000-0000-0000-0010 = 16 777 218

− (+1.00000000000000000000001*224 = 1000000000000000000000010)

Add the implicit “1.” in front of
the significant, then shift the
fractional point “exponent”

places.

Not possible to represent the
value 16 777 217 !

Exponent in “excess-127”
representation

©ESL/EPFL 32

Special values in FP representations

 IEEE 754 defines several special values:
 Infinites

− Exp = 1…1, Significand = 0

 NaNs (“Not-a-Number”)
− Exp = 1…1, Significand ≠ 0

 Positive and negative zeros
− Exp = Minimum allowed exp – 1
− Significand = 0

 Subnormal numbers
− To avoid jump from minimum normalized number (1.1754943508x10−38) to 0.
− Exp = Minimum allowed exp – 1
− Significand = Value represented with leading zeroes.

 Binary to text (round to even!):
 32 bits (float): Print with 9 decimal digits, round to even.
 64 bits (double): Print 17 decimal digits. This procedure keeps full precision

between float/double and text.
Better: Dump the hex values

rather than converting to base 10.

©ESL/EPFL 33

Fixed point representation

 Pros:
 Positional notation, no special values.
 (Almost) Same HW than integer operations.
 Easy SW implementation.
 Flexibility of representation.

− Position of the fractional point by convention!

 Cons:
 Requires that the dynamic range of the values is known.
 Possible to change dynamic range

− Change convention regarding position of fractional point.
− But values can over/underflow.

 May overflow (saturation may be introduced if required).
 Multiplication and division require 2xN bits in intermediate

operands.

©ESL/EPFL 34

Is FP more precise than FxP?

 Not necessarily! With 32 bits:
 IEEE 754 float uses 24 significand bits.
 Fixed point Q0.31 (Q31) has 31 decimal bits.
 For numbers in the range (1, -1):

− Q0.31 can represent accurately more numbers than float.

 The minimum representable values are:
 Float: 1.4012984643x10−45

 Q0.31 : 0.0000000004656612873077392578125 (~10-9)
 As seen before, the addition of two representable numbers

with different magnitudes:
 Can return one of the two terms in floating point.
 Will always return a correct number in FxP

− But it can over/underflow!!

©ESL/EPFL 35

Other options: “Brain floating-point” format
(bfloat16)

 Format proposed by Google specifically for DNNs.
 Based on IEEE-754 float (FP32).

 Truncates the mantissa size.
 Without changing the exponent size.

 Motivational insight:
 For DNN applications, a reduced mantissa is enough as long as it is

possible to still represent very small numbers without rounding to
zero.
− Avoid the “vanishing gradient” problem.

 Support: Google TPUs, Intel AVX-512 BF16, TensorFlow,
ARM v8.6-A, …

©ESL/EPFL 36

Bfloat16 bit format

 FP32: 1 + 8 + 23 (24)
 0 100 – 1011 – 1000 – 0000 – 0000 – 0000 – 0000 – 0000
 Positive range: ~3x1038 to ~1x10-38

 FP16: 1 + 5 + 10 (11)
 0 100 – 1011 – 1000 – 0000
 Positive range: 65 504 to ~5.96x10-8

 Bfloat16 (bFP16): 1 + 8 + 7 (8)
 0 100 – 1011 – 1000 – 0000
 Positive range: ~3x1038 to ~1x10-38

Sign / exponent / mantissa

©ESL/EPFL 37

Bfloat16 pros and cons

 Pros:
 Smaller mantissa requires lower area and power to implement

arithmetic operations.
 Similar dynamic range than FP32: ~3x1038 to ~1x10-38

− Similar error behavior than FP32.
− No need to adjust the loss function during training.

 Fast conversion to/from FP32:
− Keep exponent and truncate mantissa.

 Support for infinites, NaNs and saturation, as in FP.
 Cons:

 Worst representation for integer numbers (just 7 bits!).
 Still requires dedicated HW, different than integer units.
 More complex implementation than integer arithmetic (e.g., infinites,

normalization, NaNs).

©ESL/EPFL 38

Content of Session

1. What is and why do we need fixed-point arithmetic?
2. Introduction to numeric representations
3. Arithmetic in fixed-point

©ESL/EPFL 39

Nomenclature

 There are multiple ways to identify fixed-point numbers.
 In general, we need to identify the word length, the number

of integer bits and the number of decimal bits.
 Common nomenclatures are:

 Qi.j: i integer bits and j decimal bits.
 Qj: j decimal bits (somewhat ambiguous).

 Also, indicate the presence of a sign bit.

©ESL/EPFL 40

Representation examples

 Q3.4

 Range: [7.9375, -8]
 Ex: 0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, …

 Q0.7
 Range: [0.9921875, -1]

 Q1.2 (4 bits)

 Range: [1.75, -2]
 Values: 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25, 0, -0.25, -0.5, -0.75, -1,

-1.25, -1.5, -1.75, -2.

SIGN 4 2 1 0.5 0.25 0.125 0.0625

SIGN 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.0078125

SIGN 1 0.5 0.25

©ESL/EPFL 41

Choosing the decimal point position

 Requires the analysis of the dynamic range of numbers to
represent.

 Trade-off between:
 Dynamic range.
 Number of distinct values that can be accurately represented.

©ESL/EPFL 42

Implementation: Addition/Subtraction

 Addition in FxP implemented with an addition in C.
 Because the notation is positional.
 No need to align the operands. No re-normalization.
 The position of the decimal point is a convention.

 In Q2.3: (2’s complement!)

OVERFLOW!

Reutilization of the integer ALUs!

©ESL/EPFL 43

Example: Addition

 Unsaturated addition and subtraction are exactly the same
as their integer counterparts.

 No distinction between unsigned/signed.

///////////////////////////////////////
////////////////////
// Fixed-point addition.
// NON-saturating (overflows)!
uint8_t FxpAdd(uint8_t a, uint8_t b)
{

return a+b;
}

©ESL/EPFL 44

Implementation: Addition/Subtraction with
saturation

 FxP addition and subtraction can produce over/underflow.
 In assembly, simply check the OV bit of the processor.

 Saturation can be achieved with a wider representation and
introducing a check.
 More expensive, but simulates the behavior of floating point

arithmetic and avoids catastrophic errors.

int8_t addSatSigned(int8_t a, int8_t b)
{

int16_t res;

res = (int16_t)a + (int16_t)b;
if (res > 0x7F)

res = 0x7F;
if (res < 0xFF80)

res = 0xFF80;

return (int8_t)res;
}

©ESL/EPFL 45

Implementation: Multiplication

 Multiplication requires 2xN result
bits.

 Use appropriate unsigned/signed
integer variables!

 Multiply the two numbers normally.
 The result has double number of

integer and fractional bits than the
operands.

 To recover the size, shift right by
the number of fractional bits.
 This is equivalent to dividing by 2N,

discarding the least significant bits.

 In Q2.3:

3.0625  3

©ESL/EPFL 46

Example: Multiplication

 Multiplication can overflow. To address this, we can:
 Sign-extend the operands to a larger size,
 multiply,
 shift in the result size and
 then convert back to the operand size.
 May be slower (specially on 32-bit processors).

 Use an arithmetic shift!
 Automatic if signed/unsigned variables are used appropriately.

///
// Fixed-point multiplications.

// 32-bit operands with 32-bit multiplication. Can overflow:
#define FixedMult32on32(i, j, shift) ((int32_t)(i)*(int32_t)(j) >> (shift))

// 32-bit operands with 64-bit multiplication. The shift is performed on the 64-bit temporary.
#define FixedMult32on64(i, j, shift) ((int32_t)((((int64_t)(i)*(int64_t)(j)) >> (shift))))

// 16-bit operands with 32-bit multiplication. The shift is performed on the 32-bit temporary.
#define FixedMult16on32(i, j, shift) ((int16_t)((((int32_t)(i)*(int32_t)(j)) >> (shift))))

©ESL/EPFL 47

Example: Printing values

 We can convert FxP values to floating point, which are
understood by the standard libraries.
 SW emulation may be required!

 Simply separate the sign, integer and fractional parts.
///
//////
// Convert FxP (2's complement) to floating point.
double Fxp8Bit2Double(uint8_t value, uint8_t intBits)
{

uint8_t decimalBits, mask, negative = 0;
double res = 0.0, power;

if (value & 0x80) {
negative = 1;
value = (~value) + 1;

}

// Extract integer part.
decimalBits = 8 - intBits - 1;
res += value >> decimalBits;

// Extract fractional part.
power = 0.5;
mask = 1 << (decimalBits - 1);
while (decimalBits > 0) {

if (value & mask)
res += power;

power /= 2.0;
value <<= 1;
-- decimalBits;

}

return negative ? -res : res;
}

Easier/faster implementation:
#define FixedToFloat(i, shift) ((i) / (float)(1 << (shift)))
#define FloatToFixed(i, shift) ((i) * (float)(1 << (shift)))

Why/when does this work?

©ESL/EPFL 48

Example Code

//
/
int main(int argc, char **argv)
{
int32_t value1, value2, res;

////////////////////////
// Encoding examples.
value1 = 0x0C; // 3.0
printf("Binary: %hu - Decimal: %f\n", (uint16_t)value1,
FixedToFloat(value1, 5));

value1 = 0x0D; // 3.25
printf("Binary: %hu - Decimal: %f\n", (uint16_t)value1,
FixedToFloat(value1, 5));

value1 = 0x65; // 12.625
printf("Binary: %hu - Decimal: %f\n", (uint16_t)value1,
FixedToFloat(value1, 4));

value1 = 0xFFFFFF9B; // -12.625
printf("Binary: %hu - Decimal: %f\n", (uint16_t)value1,
FixedToFloat(value1, 4));

value1 = 0xFFFFFF99; // -12.875
printf("Binary: %hu - Decimal: %f\n", (uint16_t)value1,
FixedToFloat(value1, 4));

value1 = 0x67; // 12.875
printf("Binary: %hu - Decimal: %f\n", (uint16_t)value1,
FixedToFloat(value1, 4));

///////////////////////
// ADDITIONS.
value1 = 0x65;
value2 = 0xFFFFFFE7;
res = value1 + value2;
printf("\n----\nValue1: 0x%02X - Value2: 0x%02X\n",
value1, value2);

// Q28.3: 12.625 + (-3.125);
printf("Q28.3: %f + %f = %f\n",
FixedToFloat(value1, 3), FixedToFloat(value2, 3),
FixedToFloat(res, 3));

// Q29.2: 12.625 + (-3.125);
printf("Q29.2: %f + %f = %f\n",
FixedToFloat(value1, 2), FixedToFloat(value2, 2),
FixedToFloat(res, 2));

// Q30.1: 12.625 + (-3.125);
printf("Q30.1: %f + %f = %f\n",
FixedToFloat(value1, 1), FixedToFloat(value2, 1),
FixedToFloat(res, 1));

// Q24.7: 12.625 + (-3.125);
printf("Q24.7: %f + %f = %f\n",
FixedToFloat(value1, 7), FixedToFloat(value2, 7),
FixedToFloat(res, 7));

Encodings

Additions

©ESL/EPFL 49

Example Code (Cont.)

///////////////////////
// MULTIPLICATIONS.
value1 = 0x02;
value2 = 0x04;
printf("\n----\nValue1: 0x%02X - Value2: 0x%02X\n",

value1, value2);

// Q28.3: 0.25 * 0.5 = 0.125;
res = FixedMult32on32(value1, value2, 3);
printf("Q28.3: %f * %f = %f (0x%02X)\n",
FixedToFloat(value1, 3), FixedToFloat(value2, 3),
FixedToFloat(res, 3), (uint16_t)res);

// Q30.1: 1.0 * 2.0 = 2.0;
res = FixedMult32on32(value1, value2, 1);
printf("Q30.1: %f * %f = %f (0x%02X)\n",
FixedToFloat(value1, 1), FixedToFloat(value2, 1),
FixedToFloat(res, 1), (uint16_t)res);

// Q24.7: 0.015625 * 0.03125 = 0.00048828125 --> 0
res = FixedMult32on32(value1, value2, 7);
printf("Q24.7: %f * %f = %f (0x%02X)\n",
FixedToFloat(value1, 7), FixedToFloat(value2, 7),
FixedToFloat(res, 7), (uint16_t)res);

value1 = 0x65;
value2 = 0x02;
printf("\nValue1: 0x%02X - Value2: 0x%02X\n", value1,

value2);
// Q28.3: 12.625 * 0.25 = 3.15625 --> 3.125;
res = FixedMult32on32(value1, value2, 3);
printf(“Q28.3: %f * %f = %f (0x%02X)\n",
FixedToFloat(value1, 3), FixedToFloat(value2, 3),
FixedToFloat(res, 3), (uint16_t)res);

// Q24.7: 0.7890625 * 0.015625 = 0.0123291015625 -->
// 0.0078125
res = FixedMult32on32(value1, value2, 7);
printf("Q24.7: %f * %f = %f (0x%02X)\n",
FixedToFloat(value1, 7), FixedToFloat(value2, 7),
FixedToFloat(res, 7), (uint16_t)res);

value1 = 0x65;
value2 = 0xFFFFFFFE;
printf("\nValue1: 0x%02X - Value2: 0x%02X\n", value1,

value2);
// Q28.3: 12.625 * -0.25 = -3.15625 --> -3.25;
res = FixedMult32on32(value1, value2, 4);
printf("Q28.3: %f * %f = %f (0x%02X)\n",
FixedToFloat(value1, 3), FixedToFloat(value2, 3),
FixedToFloat(res, 3), (uint16_t)res);

// Q24.7: 0.7890625 * -0.015625 = -0.0123291015625 -->
// -0.015625
res = FixedMult32on32(value1, value2, 0);
printf("Q24.7: %f * %f = %f (0x%02X)\n",
FixedToFloat(value1, 7), FixedToFloat(value2, 7),
FixedToFloat(res, 7), (uint16_t)res);

return 0;
}

Multiplications

The same binary value
is interpreted
differently according
to the chosen
representation.

The binary
operations

are the
same!

©ESL/EPFL 50

Example: Results

Binary: 12 - Decimal: 3.000000
Binary: 13 - Decimal: 3.250000
Binary: 101 - Decimal: 12.625000
Binary: 155 - Decimal: -12.625000
Binary: 153 - Decimal: -12.875000
Binary: 103 - Decimal: 12.875000

Value1: 0x65 - Value2: 0xFFFFFFE7
Q28.3: 12.625000 + -3.125000 = 9.500000
Q29.2: 25.250000 + -6.250000 = 19.000000
Q30.1: 50.500000 + -12.500000 = 38.000000
Q24.7: 0.789062 + -0.195312 = 0.593750

Value1: 0x02 - Value2: 0x04
Q28.3: 0.250000 * 0.500000 = 0.125000 (0x01)
Q30.1: 1.000000 * 2.000000 = 2.000000 (0x04)
Q24.7: 0.015625 * 0.031250 = 0.000000 (0x00)

Value1: 0x65 - Value2: 0x02
Q28.3: 12.625000 * 0.250000 = 3.125000 (0x19)
Q24.7: 0.789062 * 0.015625 = 0.007812 (0x01)

Value1: 0x65 - Value2: 0xFFFFFFFE
Q28.3: 12.625000 * -0.250000 = -3.250000 (0xFFE6)
Q24.7: 0.789062 * -0.015625 = -0.015625 (0xFFFE)

Exact results

Underflow

(3.15625)
(0.01232909375)

Effect of shifting is
truncation.

©ESL/EPFL 51

Questions?

Let’s use fixed point arithmetic in
the NDS!

	Systèmes Embarqués Microprogrammés
	Content of Session
	What is fixed-point (FxP)?
	What is floating-point (FP)?
	Comparison between FxP and FP
	Comparison between FxP and FP
	Efficiency of Fixed-point vs. floating-point
	Efficiency of Fixed-point vs. floating-point
	Fixed-point arithmetic to compute fractals
	Fixed-point arithmetic to compute fractals
	Fixed-point arithmetic to compute fractals
	Fixed-point arithmetic to compute fractals
	Fixed-point arithmetic to compute fractals
	Fixed-point arithmetic to compute fractals
	Fixed-point arithmetic to compute fractals
	Fixed-point arithmetic to compute fractals
	Fixed-point arithmetic to compute fractals
	Fractal execution times (NDS)
	Why is FxP popular for CNNs?
	Why FxP instead of FP to reduce bit-width?
	Impact on DNN accuracy of FxP quantization
	Content of Session
	Numeric representations
	Characterization of numeric representations
	Characteristics of numeric representations: integers
	Characteristics of numeric representations: floating point
	Characteristics of numeric representations: fixed point
	Representable range and density
	Floating point representation
	Particularities of FP representations
	Density of representation in FP
	Special values in FP representations
	Fixed point representation
	Is FP more precise than FxP?
	Other options: “Brain floating-point” format (bfloat16)
	Bfloat16 bit format
	Bfloat16 pros and cons
	Content of Session
	Nomenclature
	Representation examples
	Choosing the decimal point position
	Implementation: Addition/Subtraction
	Example: Addition
	Implementation: Addition/Subtraction with saturation
	Implementation: Multiplication
	Example: Multiplication
	Example: Printing values
	Example Code
	Example Code (Cont.)
	Example: Results
	Slide Number 51

