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=PrL What is fixed-point (FxP)?

= Given a fixed number of digits in base 10, we can represent

iInteger numbers by: 5 4 > 5
103 102 10° 10°
Positional notation)

= We can represent decimal numbers if we multiply implicitly by
a negative power of 10:

5429

5 4 2 9

101 100 10-1 10-2 54.29
= We can do the same in binary:
1 0 1 1
o 00 o 02 2.75 .

= The position of the decimal point is implicit (and fixed).
= But we can modify it by explicitly shifting.
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cPrL What is floating-point (FP)?

= Floating point numbers are divided into two parts:
= Significant digits (a.k.a. mantissa)
= Exponent (a power of 2)

= A sequence of binary digits multiplied by [2 to the power of]
the exponent:

0 1001 100 144
Sign +/-|Mantissa = 9[Exponent = 4 (9x24)
0 1001 110 576 Floating point is a
Sign +/-|Mantissa = 9|[Exponent = 6 (9x26) non-positional
notation! o

= The position of the decimal point is determined by the
exponent value
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Comparison between FxP and FP

Fixed Point

= Reuse integer arithmetic units
= Both are positional

= Reuse integer registers

= SW can easily define its own
representation

= Because the position of the
decimal point is implicit (i.e.,
hidden from the HW)

= SW decides how to interpret the
numbers
Always unsigned or 2’s complement

= Easy to implement SIMD
model for smaller bitwidths

O©ESL/EPFL

Floating Point

= Requires specific HW units
= And the logic is more complex

= Requires new set of registers
= (Just common practice)

= Difficult to define non-
standard configurations that
differ from what is supported
by the HW

How can we convert an integer
adder into a SIMD adder?
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Comparison between FxP and FP

= Floating point requires different HW units

= —>High cost in terms of area and power
Higher leakage due to larger area
Higher dynamic power due to more complex operation

= But it can also be executed in “SW-emulation” mode

= Bit-manipulation operations to separate and operate on the mantissa
and exponent of the operands independently

= —>High cost in terms of execution cycles and energy
Many more operations than for direct integer operations
Longer execution time - more energy (E =P - t)

= Floating point has a much larger dynamic range

0 1111 111 1920 Max. value with 8 bits in integer ‘
Sign +/-|Mantissa = 15|Exponent =7 (15x27) positional notation is 255!

0 11 1111 6 442 450 944 [,e,,,::;:::::*:;‘:;::;‘.:::3::;'::::231,]
Sign +/-[Mantissa = 3[Exponent = 31 (3x231) 2x2! and 3x2°! !

We can play with the dynamic range of our representation,
but we can represent only 256 distinct values with 8 bits!

O©ESL/EPFL
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Efficiency of Fixed-point vs. floating-point

= Advantage: (Much) faster execution time in the NDS.
= Problem: The reduced dynamic range can introduce errors.

4
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w @
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m Floating m FxP

Example: Cognitive workload monitoring with the e-Glass wearable device. The Cortex-M4f has HW support for floating-point (FPU),
while the RI5CY and Cortex-M0+ execute floating-point operations using SW emulation.
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Efficiency of Fixed-point vs. floating-point

= Advantage: (Much) faster execution time in the NDS.
= Problem: The reduced dynamic range can introduce errors.

5]

IS

w

(]

=

O©ESL/EPFL

~

4 @
Execution time (s) :
Nl ~ v
\ 4 ”
\\
(SW-FP) Energy consumption (uWh)
(SW-FP) 150 (SW-FP)
140
(HW-FP) e
100
80
& (SW-FP)
40
20
5 ]
RISCY (Risc-V) Cortex-M0+

Cortex-Maf RISCY (RISC-V) Cortex-M0+
B Floating (SW) mFxP

m Floating m FxP

Cortex-MA4f is faster than FxP

If the CPU contains HW support for floating
point, then it may be faster than FxP

The NDS CPU does not have HW support for
floating point = FxP is faster

[With careful optimization, HW-FP on the]
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=P~L  Fixed-point arithmetic to compute fractals

Floating point (32-bit)



=P~L  Fixed-point arithmetic to compute fractals

FxP Q11.20 (64-bit mult)
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=P~L  Fixed-point arithmetic to compute fractals

FxP Q15.16 (64-bit mult)
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=P~L  Fixed-point arithmetic to compute fractals

FxP Q16.15 (64-bit mult)
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=P~L  Fixed-point arithmetic to compute fractals

FxP Q17.14 (64-bit mult)
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=P~L  Fixed-point arithmetic to compute fractals

FxP Q18.13 (64-bit mult)
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=P~L  Fixed-point arithmetic to compute fractals

FxP Q19.12 (64-bit mult)
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=P~L  Fixed-point arithmetic to compute fractals

FxP Q20.11 (64-bit mult)
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Fixed-point arithmetic to compute fractals

The fractal moves as we change the
numeric representation!

The coordinates in the complex plane that correspond to the screen
coordinates of each pixel are also computed in FxP. As we reduce
the number of decimals, the precision of the coordinates changes!

HOW CAN WE FIX THIS?

FxP Q21.10 (64-bit mult)
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Fractal execution times (NDS)

Arithmetic Time (s) Improvement Time (s) Improvement
(over FP) (over FP)
FP (32 bits) 103 1 X 105 1.0 x
FxP 16 bits: Q7.8 8 13 x 30 3.5 x
FxP 16 bits: Q5.10 6 17 x
FxP 32 bits, mult-32: Q23.8 6 17 x 29 3.6 X
FxP 32 bits, mult-32: Q21.10 5 21 x 30 3.5 x
FxP 32 bits, mult-32: Q11.20 11 9 x 83 1.3 X
FxP 32 bits, mult-64: Q21.10 10 10 x 84 1.2 X o

©ESL/EPFL 18



cPrL Why is FxP popular for CNNs?

= Reducing the model’'s memory footprint:

= From 32-bit floating point
To FP-16: 2x reduction.
To FxP 16-bit: 2x reduction.
To FxP 8-bit: 4x reduction.
To FxP 4-bit: 8x reduction.
To binary (1-bit): 32x reduction.

= Less memory in embedded devices.
= Less memory bandwidth during inference, higher speed, less energy.

= |f single instruction multiple data (SIMD) support exists, ’
multiplied performance for the same energy!

= FxP 8-bit with 32-bit SIMD registers: 4x faster than FP-32, (almost)
the same energy.

©ESL/EPFL 19



=PrL Why FxP instead of FP to reduce bit-width?

= Reduced bit-width is often not supported for FP.

Modern GPUs and processors increasingly support FP-16, FP-8 or
even smaller sizes, particularly for DNNs.'

But not commonplace (yet).
And still requires dedicated HW.

= Embedded HW without floating point support.
Reuses integer functional units.
More energy and area efficient.

= Potential issues:
FxP has smaller dynamic range. [ As.in the previous }
May produce under/overflows. “wandering” fractal example...
Or saturates too big or too small results.
Requires previous characterization of dynamic range.

20
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1 Impact on DNN accuracy of FxP
guantization
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= Accuracy may be reduced.
Fixed point is not necessarily less accurate than floating point, but:

Smaller dynamic range.
Less precision as the bit-width is reduced.
= Experiments on a convolutional neural network (CNN) based

industrial system:’
Weights can be stored with only decimals (%=0.x).
Activations accumulate, hence they require integer bits.

Accuracy results:
Floating point 32-bit (baseline): 99.8 %
Fixed point 8-bit weights, 16-bit activations: 99.8 %
Fixed point 4-bit weights, 8-bit activations: 92.7 %

With no impact on accuracy, we can reduce the model size by a factor
of 4, activation buffers by 2 and execute 2 times faster (with SIMD).

[1] "Impact of memory voltage scaling on accuracy and resilience of deep learning based edge devices." Benoit W. Denkinger, Flavio Ponzina,
Soumya S. Basu, Andrea Bonetti, Szabolcs Balasi, Martino Ruggiero, Miguel Pe6n-Quirds, Davide Rossi, Andreas Burg, David Atienza. 21
©ESL/EPFL IEEE Design & Test, 2019. doi: 10.1109/MDAT.2019.2947282
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Numeric representations

= Integers
= Positional notation. 23 22 91 90

* Floating point (FP, 32-bit)
= The fractional point can be moved dynamically.
= Sign, exponent and fraction (significand) of fixed sizes.
= Smallest positive normal number: 1.1754943508x1038

= Range for subnormals: *+[1.175494210x10738,
1.4012984643x1074°]

= Fixed point (FxP): Positional notation

= Fractional point divides integer and .
fractional parts with fixed bit-widths: It's a
convention!

= Range depends on number of bits for

integer and fractional parts.
©ESL/EPFL 23
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1 Characterization of numeric
representations

m
0
I

= Word length
= Number of bits in the representation: uint32_t, float, Q45 44
= Range
= Difference between most positive and most negative numbers.
= Resolution
= Smallest non-zero magnitude representable.
= FP32: =1.4012984643x1074°
= FxP (1+15+16 bits): =0.0000152587890625 (2-9)
= Accuracy D L 018001 0300 e e
= Maximum difference between a real value and its representation.
= | For floating point, accuracy changes with the absolute value! °
= Dynamic range
= Ratio between maximum value and minimum positive value.

+/- 21 20 21 92
O©ESL/EPFL / 2 24



Characteristics of numeric representations:
iIntegers
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= Unsigned, signed and magnitude, 2's complement.
= Range:
= Unsigned: [2N-1, 0]
= 2’'s complement: [2N-1-1, -2N-1]
= Resolution: *1
= Accuracy: 1.
= Dynamic range: (2N-1-1)/1
= For 32 bit, 2’'s complement: 2147483647 / 1 ~ 10°

©ESL/EPFL 25



Pl Characteristics of numeric representations:
floating point

m

= |EEE 754 defines bit sizes: (16), 32, 64, (80), 128, 256.
= For 32 bit (float):

1 sign bit, 8 exponent bits, 23+1 significand bits (“normals”).
= Range: [3.4028234664x10%8, -3.4028234664x1038]

= Resolution:
Smallest positive normal number: 1.1754943508x10738

Range for subnormals: +[1.175494210x10728,
1.4012984643x1074°]

= Accuracy: Variable! -

= Dynamic range:
3.4028234664x1038/ 1.1754943508x10738 ~|1076

©ESL/EPFL 26



cpe| Characteristics of numeric representations:
fixed point

= Same size as native integers. Unsigned/signed (2's
complement).

= Example: Q5 44
1 sign bit, 15 integer bits, 16 decimal bits.

= Range: [32767.999984741210938, -32768]

= Resolution:
Smallest positive normal number: 0.0000152587890625 (2-6)

= Accuracy: 0.0000152587890625
= Dynamic range:
32767.999984741210938 / 0.0000152587890625 ~ 10°

- The same than the integer representation. [Q14-17' Q31 ???]
If we are using the same 32 bits, how is it possible to
have a dynamic range of 107 with FP32?

©ESL/EPFL 27
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Representable range and density

= Representable ranges:

3x1038 2x10° 32767 0 -32767 -2x10° -3x1038
I I L1 | I I

<

>

How many different numbers
can | represent in each case?

= Density of representation:

= uint32_t: One value every integer.
" Q544" One value every 0.0000152587890625
= Floating point 32 bit:

(224, 0]: Every integer is representable.
(225, 224]: Only even integers are representable. ¢
(225, 22°]: Only one out of four integers is representable.

©ESL/EPFL 28



cPrL Floating point representation

= Pros:
= Large dynamic range.
= Dynamic range adaptation.
= |deal when dealing with differing or unknown magnitudes.
= Saturation to =

= Cons:

= Arithmetic is different than integers.
Requires specific HW.

= Operations are more complex.
Larger area and higher energy consumption.
Dealing with infinites, NaNs, normal/subnormal numbers. o
Addition requires aligning operands!
Re-normalization after every operation.

= Not supported in many embedded platforms.

= Complex SW emulation.
©ESL/EPFL
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cPrL Particularities of FP representations

= The varying density of the representation may produce
unexpected results.

#include <stdio.h> ] i
Will this program end?
int main(int argc, char ** argv)
{
floata=0.0,b=1.0, old =-1.0;
while (old != a) {
old = a Screen output
} a +=b; 16777216.000000000
0x4B800000
printf("%0.9A\n", a); ’
orintf("0x%08X\n", *((unsigned int*) &a)):  wHY? |
return O;
}

©ESL/EPFL 30
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Density of representation in FP

= 16 777 216 in FP32 is 0x4B800000:

= 0100-1011-1000 — 0000 — 0000 — 0000 — 0000 — 0000

= Sign: 0, positive. [EXPO“e“t in “excess-127”] Add the implicit “1.” in front of

representation . g :
Exponent: 151-127=24 the svgmﬂcantc, tflllen shift th”e
fractional point “exponent

Significand: 1.0 olaces.
Implicit “1.” in floating point representations.

Value: 1-0000-0000-0000-0000-0000-0000 =16 777 216
(+1.000000000000000000000000*224 = 1000000000000000000000000)
= Next possible binary value is 0x4B800001:
= 0100-1011 -1000 — 0000 — 0000 — 0000 — 0000 — 0001
Sign: 0, positive. Not possible to represent the s
Exponent: 151-127=24 value 16 777 217 !
Significand: 1.00000000000000000000001

Value: 1-0000-0000-0000-0000-0000-0010 =16 777 218
(+1.00000000000000000000001*224 = 1000000000000000000000010)

©ESL/EPFL 31



=PrL Special values in FP representations

= |EEE 754 defines several special values:

= [Infinites
Exp = 1...1, Significand = 0
= NaNs (“Not-a-Number”)
Exp = 1...1, Significand # 0
= Positive and negative zeros
Exp = Minimum allowed exp — 1
Significand = 0
= Subnormal numbers
To avoid jump from minimum normalized number (1.1754943508x10-38) to O.

Exp = Minimum allowed exp — 1
Significand = Value represented with leading zeroes.

= Binary to text (round to even!):
= 32 bits (float): Print with 9 decimal digits, round to even.

= 64 bits (double): Print 17 decimal digits. | This procedure keeps full precision
between float/double and text.

Better: Dump the hex values
rather than converting to base 10.

O©ESL/EPFL
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Fixed point representation

* Pros:
= Positional notation, no special values.
= (Almost) Same HW than integer operations.
= Easy SW implementation.
= Flexibility of representation.
Position of the fractional point by convention!
= Cons:
= Requires that the dynamic range of the values is known.

= Possible to change dynamic range
Change convention regarding position of fractional point.
But values can over/underflow.

= May overflow (saturation may be introduced if required).

= Multiplication and division require 2xN bits in intermediate
operands.

©ESL/EPFL 33
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Is FP more precise than FxP?

= Not necessarily! With 32 bits:
= |EEE 754 float uses 24 significand bits.
= Fixed point Qg 5, (Q34) has 31 decimal bits.
= For numbers in the range (1, -1):
Qg 31 can represent accurately more numbers than float.
= The minimum representable values are:
= Float: 1.4012984643x10°%°
= Qg 34:0.0000000004656612873077392578125 (~109)

= As seen before, the addition of two representable numbers
with different magnitudes: :
= Can return one of the two terms in floating point.

= Will always return a correct number in FxP
But it can over/underflow!!

O©ESL/EPFL 34



cpre| Other options: “Brain floating-point” format
(bfloat16)

= Format proposed by Google specifically for DNNs.
= Based on IEEE-754 float (FP32).

= Truncates the mantissa size.
= Without changing the exponent size.

= Motivational insight:

= For DNN applications, a reduced mantissa is enough as long as it is
possible to still represent very small numbers without rounding to
zero.
Avoid the “vanishing gradient” problem.

= Support: Google TPUs, Intel AVX-512 BF16, TensorFlow,
ARM v8.6-A, ...

©ESL/EPFL 35
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Bfloat16 bit format

= FP32:1+8+ 23 (24)
= 0100-1011-1000 - 0000 — 0000 — 0000 — 0000 — 0000
= Positive range: ~3x1038to ~1x10-38
= FP16:1+5+10 (11) [
= 0100-1011-1000 - 0000
= Positive range: 65 504 to ~5.96x10-8
= Bfloat16 (bFP16): 1 + 8 + 7 (8)
= 0100-1011-1000 - 0000
= Positive range: ~3x1038to ~1x10-38

Sign / exponent / mantissa ]

©ESL/EPFL 36
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Bfloat16 pros and cons

= Pros:

= Smaller mantissa requires lower area and power to implement
arithmetic operations.

= Similar dynamic range than FP32: ~3x1038to ~1x10-38

Similar error behavior than FP32.
No need to adjust the loss function during training.

= Fast conversion to/from FP32:
Keep exponent and truncate mantissa.

= Support for infinites, NaNs and saturation, as in FP.

= Cons:
= Worst representation for integer numbers (just 7 bits!).
= Still requires dedicated HW, different than integer units.

= More complex implementation than integer arithmetic (e.g., infinites,
normalization, NaNs).

©ESL/EPFL 37
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cPrL Nomenclature

= There are multiple ways to identify fixed-point numbers.

= |n general, we need to identify the word length, the number
of integer bits and the number of decimal bits.

= Common nomenclatures are:
= Qi integer bits and j decimal bits.
= Q] decimal bits (somewhat ambiguous).
= Also, indicate the presence of a sign bit.

©ESL/EPFL 39
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Representation examples

= Q34 SIGN 4 2 1 0.5 | 0.25 | 0.125 |0.0625

= Range: [7.9375, -8]
= Ex:0,0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, ...

: : : : : 5(0.015625 [0.0078125
= Q0.7 SIGN 0.5 0.25 | 0.125 |0.0625 |0.0312

= Range: [0.9921875, -1]

= Q1.2 (4 bits) SIGN | 1 | 05 | 025

= Range: [1.75, -2]
= Values: 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25, 0O, -0.25, -0.5, -0.75, -1,

-1.25, -1.5, -1.75, -2.

O©ESL/EPFL 40



=PrL Choosing the decimal point position

= Requires the analysis of the dynamic range of numbers to
represent.

* Trade-off between:
= Dynamic range.
= Number of distinct values that can be accurately represented.

O©ESL/EPFL 41
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Implementation: Addition/Subtraction

= Addition in FxP = implemented with an addition in C.
= Because the notation is positional. [ Reutilization of the integer ALUs! ]
= No need to align the operands. No re-normalization.
= The position of the decimal point is a convention.

= In Q,5: (2's complement!)

0.875 000111 0.875 000111

1.5 +001100 -0.25 +111110

2.375 010011 0.625 000101 .
0.875 000111
3.5 +011100

-3.625 100011 [ OVERFLOW! ]

O©ESL/EPFL 42



cPrL Example: Addition

= Unsaturated addition and subtraction are exactly the same
as their integer counterparts.

= No distinction between unsigned/signed.

[IT1717777777777777777777771777777717777
[11717177717717711177

// Fixed-point addition.

// NON-saturating (overflows)!

uint8 t FxpAdd(uint8 t a, uint8 t b)

{

return a+b;

}

O©ESL/EPFL 43



cpr)  Implementation: Addition/Subtraction with
saturation

= FxP addition and subtraction can produce over/underflow.
= |n assembly, simply check the OV bit of the processor.
= Saturation can be achieved with a wider representation and
iIntroducing a check.

= More expensive, but simulates the behavior of floating point
arithmetic and avoids catastrophic errors.

int8 t addSatSigned(int8_t a, int8_t b)
{

intl6_t res;

res = (intl6_t)a + (intl6_t)b;
if (res > Ox7F)

res = Ox7F;
if (res < OxFF80)

res = OxFF80;

return (int8 t)res;

O©ESL/EPFL 44



cPrL Implementation: Multiplication

= Multiplication requires 2xN result
bits.

= InQ,35:
= Use appropriate unsigned/signed |
- ables] 0.875 000111
integer varia ! ac *ol1/11l0l0
= Multiply the two numbers normally. 3 000000
= The result has double number of 0/0/0/0/0/0
integer and fractional bits than the +| | 1000111
operands. 990111
_ o 000111
= To recover the size, shift right by 0000000
the number of fractional bits. coooi1i1lcoozi1o0l
= This is equivalent to dividing by 2N, (Shift >> 3)
discarding the least significant bits. 011000

| 3062553 |
45
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Example: Multiplication

= Multiplication can overflow. To address this, we can:
= Sign-extend the operands to a larger size,
= multiply,
= shift in the result size and
= then convert back to the operand size.
= May be slower (specially on 32-bit processors).

= Use an arithmetic shift!
= Automatic if signed/unsigned variables are used appropriately.

LITTTTTTTIT T 777777777777 777777777 77777777777777

// Fixed-point multiplications.

// 32-bit operands with 32-bit multiplication. Can overflow:
#define FixedMult32on32(i, j, shift) ((int32_t)(i)*(int32_t)(j) >> (shift))

// 32-bit operands with 64-bit multiplication. The shift is performed on the 64-bit temporary.
#define FixedMult32on64(i, j, shift) ((int32_t)((((int64_t)(i)*(int64_t)(j)) >> (shift))))

// 16-bit operands with 32-bit multiplication. The shift is performed on the 32-bit temporary.
#define FixedMultl6on32(i, j, shift) ((intl6_t)((((int32_t)(i)*(int32_t)(j)) >> (shift))))

46
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Example: Printing values

= We can convert FxP values to floating point, which are
understood by the standard libraries.
= SW emulation may be required!

= Simply separate the sign, integer and fractional parts.

LITTTTTTTTTT 7777777777777 7717777777717777
/111177

// Convert FxP (2's complement) to floating point.
double Fxp8Bit2Double(uint8 t value, uint8 t intBits)
{

uint8 t decimalBits, mask, negative = 0;

double res = 0.0, power;

if (value & 0x80) {
negative = 1;
value = (~value) + 1;

}

// Extract integer part.
decimalBits = 8 - intBits - 1; }

// Extract fractional part.
power = 0.5;
mask = 1 << (decimalBits - 1);
while (decimalBits > 0) {

if (value & mask)

res += power;

power /= 2.0;

value <<= 1;

-- decimalBits;

}

return negative ? -res : res; ®

res += value >> decimalBits;

Easier/faster implementation:

#define FixedToFloat(i, shift) ((i) / (float)(1 << (shift)))

#define FloatToFixed(i, shift) ((i) * (float)(1 << (shift)))
(

O©ESL/EPFL

[ Why/when does this work? ]
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Example Code

[ITTTTT1T77 7007777777777 7777 777777777 7777777777777777777  17777777777777771717777 [

/ // ADDITIONS. Additions J
int main(int argc, char **argv) valuel = Ox65;
{ value2 = OXFFFFFFE7;

int32_t valuel, value2, res; res = valuel + value2;

printf("\n----\nValuel: 0x%02X - Value2: 0x%02X\n",

[I171777777777717111771717 . valuel, value2);

// Encoding examples. [ ENCOdlngS ] // Q28.3: 12.625 + (-3.125);

valuel = oxeC; // 3.0 printf("Q28.3: %f + %f = %f\n",

printf("Binary: %hu - Decimal: %f\n", (uintl6_t)valuel, FixedToFloat(valuel, 3), FixedToFloat(value2, 3),

FixedToFloat(valuel, 5)); FixedToFloat(res, 3));

valuel = @xeD; // 3.25
printf("Binary: %hu - Decimal: %f\n", (uintl6_t)valuel, // Q29.2: 12.625 + (-3.125);

FixedToFloat(valuel, 5)); printf("Q29.2: %f + %f = %f\n",
valuel = Ox65; // 12.625 FixedToFloat(valuel, 2), FixedToFloat(value2, 2),
printf("Binary: %hu - Decimal: %f\n", (uintl6_t)valuel, FixedToFloat(res, 2));
FixedToFloat(valuel, 4));
valuel = OxFFFFFF9B; // -12.625 // Q30.1: 12.625 + (-3.125);
printf("Binary: %hu - Decimal: %f\n", (uintl6_t)valuel, printf("Q30.1: %f + %f = %f\n",
FixedToFloat(valuel, 4)); FixedToFloat(valuel, 1), FixedToFloat(value2, 1),
valuel = OxFFFFFF99; // -12.875 FixedToFloat(res, 1));
printf("Binary: %hu - Decimal: %f\n", (uintl6_t)valuel,
FixedToFloat(valuel, 4)); // Q24.7: 12.625 + (-3.125);
valuel = Ox67; // 12.875 printf("Q24.7: %f + %f = %f\n",
printf("Binary: %hu - Decimal: %f\n", (uintlé_t)valuel, FixedToFloat(valuel, 7), FixedToFloat(value2, 7),
FixedToFloat(valuel, 4)); FixedToFloat(res, 7)); [
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Example Code (Cont.)

[117111111111171111117117
// MULTIPLICATIONS.
valuel = 0x02;
value2 = 0x04;
printf("\n----\nValuel: 0x%02X - Value2: 0x%02X\n",

valuel, value2);

[ Multiplications ]

// Q28.3: 0.25 * 9.5 = 0.125;

res = FixedMult32on32(valuel, value2, 3);

printf("Q28.3: %f * %f = %f (0x%02X)\n",
FixedToFloat(valuel, 3), FixedToFloat(value2, 3),
FixedToFloat(res, 3), (uintlé_t)res);

// Q30.1: 1.0 * 2.0 = 2.0;

res = FixedMult32on32(valuel, value2, 1);

printf("Q30.1: %f * %f = %f (0x%02X)\n",
FixedToFloat(valuel, 1), FixedToFloat(value2, 1),
FixedToFloat(res, 1), (uintlé_t)res);

// Q24.7: 0.015625 * 0.03125 = 0.00048828125 --> 0O

res = FixedMult32on32(valuel, value2, 7);

printf("Q24.7: %f * %f = %f (0x%02X)\n",
FixedToFloat(valuel, 7), FixedToFloat(value2, 7),
FixedToFloat(res, 7), (uintlé_t)res);

value2);

valuel 0Xx65;
value2 = 0x02;
printf("\nValuel: 0x%02X - Value2: 0x%02X\n", valuel,

value2);

»—> // Q28.3: 12.625 * 0.25 = 3.15625 --> 3.125;

(: res = FixedMult32on32(valuel, value2, 3);

T prERreRQ28 3 %f * %f = %f (0x%02X)\n",

FixedToFloat(valuel, 3), FixedToFloat(value2, 3),
FixedToFloat(res, 3), (uintlé_t)res);

—epresentation,

O©ESL/EPFL

// Q24.7: 0.7890625 * 0.015625 = 0.0123291015625 -->

// ©.0078125

res = FixedMult32on32(valuel, value2, 7);

printf("Q24.7: %f * %f = %f (0x%02X)\n",
FixedToFloat(valuel, 7), FixedToFloat(value2, 7),
FixedToFloat(res, 7), (uintlé_t)res);

valuel 0x65;
value2 = OxFFFFFFFE;
printf("\nValuel: Ox%02X - Value2: 0x%02X\n", valuel,

// Q28.3: 12.625 * -0.25 = -3.15625 --> -3.25;

res = FixedMult32on32(valuel, value2, 4);

printf("Q28.3: %f * %f = %f (0x%02X)\n",
FixedToFloat(valuel, 3), FixedToFloat(value2, 3),
FixedToFloat(res, 3), (uintlé_t)res);

// Q24.7: 0.7890625 * -0.015625 = -0.0123291015625 -->

// -9.015625

res = FixedMult32on32(valuel, value2, 9);

printf("Q24.7: %f * %f = %f (0x%02X)\n",
FixedToFloat(valuel, 7), FixedToFloat(value2, 7),
FixedToFloat(res, 7), (uintlé_t)res);

return 9;

The same binary value
is interpreted
differently according
to the chosen

The binary
operations
are the

same!
- 10
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Example: Results

Binary: 12 - Decimal: 3.000000
Binary: 13 - Decimal: 3.250000
Binary: 101 - Decimal: 12.625000
Binary: 155 - Decimal: -12.625000
Binary: 153 - Decimal: -12.875000
Binary: 103 - Decimal: 12.875000

Valuel: Ox65 - Value2: OxXFFFFFFE7

Q28.3: 12.625000 + -3.125000 = 9.500000
Q29.2: 25.250000 + -6.250000

19. 000000 [ Exact results J

Q30.1: 50.500000 + -12.500000 = 38.000000
Q24.7: 0.789062 + -0.195312 = 0.593750

Valuel: 0x02 - Value2: 0x04
0Q28.3: 0.250000 * 0.500000 = 0.125000 (©x01)
Q30.1: 1.000000 * 2.000000 2.000000 (0x04)

Q24.7: 0.015625 * 0.031250 = 0.000000 (@X@O)[

Underflow J

Valuel: Ox65 - Value2: 0x02
Q28.3: 12.625000 * 0.250000 = 3.125000 (0x19)
Q24.7: ©.789062 * 0.015625 = 0.007812 (©x01)

Valuel: 0x65 - Value2: OXFFFFFFFE
Q28.3: 12.625000 * -0.250000 = -3.250000 (OXFFE6)
Q24.7: ©.789062 * -0.015625 = -0.015625 (OXFFFE)

C )

(3.15625)
(0.01232909375)
Effect of shifting is
truncation.

A )
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Questions?

oy &k

Let's use fixed point arithmetic in

the NDS!

EEEEEEEEE
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